A numerical investigation of the heat transfer characteristics of water-based mango bark nanofluid flowing in a double-pipe heat exchanger
Loading...
Date
Authors
Onyiriuka, E.J.
Ewim, Daniel Raphael Ejike
Ighodaro, O.O.
Adelaja, A.O.
Ewim, D.R.E. (Daniel)
Bhattacharyya, S.
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Abstract
In this study, the heat transfer characteristics of a new class of nanofluids made from mango bark was numerically
simulated and studied during turbulent flow through a double pipe heat exchanger. A range of volume fractions was
considered for a particle size of 100 nm. A two-phase flow was considered using the mixture model. The mixture
model governing equations of continuity, momentum, energy and volume fraction were solved using the finitevolume
method. The results showed an increase of the Nusselt number by 68% for a Reynolds number of 5,000
and 45% for a Reynolds number of 13 000, and the heat transfer coefficient of the nanofluid was about twice that of
the base fluid. In addition, the Nusselt number decreased by an average value of 0.76 with an increase of volume
fraction by 1%. It was also found that there was a range of Reynolds numbers in which the trend of the average heat
transfer coefficient of the nanofluid was completely reversed, and several plots showing zones of higher heat
transfer which if taken advantage of in design will lead to higher heat transfer while avoiding other zones that have
low heat transfer. It is hoped that these results will influence the thermal design of new heat exchangers.
Description
Keywords
Chemical engineering, Energy, Mechanical engineering, Nanotechnology, Mixture model, Bio-nanoparticle, Double-pipe heat exchanger, Heat transfer
Sustainable Development Goals
SDG-07: Affordable and clean energy
SDG-09: Industry, innovation and infrastructure
SDG-12: Responsible consumption and production
SDG-09: Industry, innovation and infrastructure
SDG-12: Responsible consumption and production
Citation
Onyiriuka, E.J., Ighodaro, O.O., Adelaja, A.O. et al. 2019, 'A numerical investigation of the heat transfer characteristics of water-based mango bark nanofluid flowing in a double-pipe heat exchanger', Heliyon, vol. 5, art. e02416, pp. 1-13.