Prediction of performance of the moving-bed biofilm pilot reactor using back-propagation artificial neural network (BP-ANN)

dc.contributor.authorRava, Eleonora Maria Elizabeth
dc.contributor.authorChirwa, Evans M.N.
dc.contributor.emailevans.chirwa@up.ac.zaen_ZA
dc.date.accessioned2018-01-26T11:58:34Z
dc.date.available2018-01-26T11:58:34Z
dc.date.issued2017
dc.description.abstractCoal gasification stripped gas liquor (CGSGL) wastewater contains large quantities of complex organic and inorganic pollutants which include phenols, ammonia, hydantoins, furans, indoles, pyridines, phthalates and other monocyclic and polycyclic nitrogen containing aromatics, oxygen- and sulphur containing heterocyclic compounds. Most conventional aerobic systems for coal gasification wastewater treatment are not sufficient in reducing pollutants such as chemical oxygen demand (COD), phenols and ammonia due to the presence of toxic and inhibitory organic compounds. The current paper reports on the degradation of aromatic compounds and the reduction of hard COD in CGSGL using a Moving-Bed Biofilm Reactor (MBBR) system. The inoculum contained a genetically enhanced mixed culture of Pseudomonas putida, Pseudomonas plecoglossicida, Rhodococcus erythropolis, Rhodococcus qingshengii, Enterobacter cloacae, Enterobacter asburiae strains of bacteria, seaweed and diatoma. Consistently high hard COD removal (>88 %) and degradation of targeted phenolic compounds (>93 %) was achieved in the reactor with no loss of biodiversity in the consortium culture. The performance of the reactor outside the observable range was projected using a Back-Propagation Artificial Neural Network (BP-ANN) developed in this study.en_ZA
dc.description.departmentChemical Engineeringen_ZA
dc.description.librarianam2018en_ZA
dc.description.sponsorshipThe project was partially funded by National Research Foundation (NRF) through the Incentive Funding for Rated Researchers Grant No. IFR170214222643 awarded to Prof Evans M.N. Chirwa of the Department of Chemical Engineering, University of Pretoria. Buckman Africa provided funding for chemical and microbiological analyses.en_ZA
dc.description.urihttp://www.aidic.it/ceten_ZA
dc.identifier.citationRava E.M.E., Chirwa E.M.N., 2017, Prediction of performance of the moving-bed biofilm pilot reactor using backpropagation artificial neural network (bp-ann), Chemical Engineering Transactions, 61, 1189-1194 DOI: 10.3303/CET1761196.en_ZA
dc.identifier.isbn978-88-95608-51-8
dc.identifier.issn2283-9216 (online)
dc.identifier.other10.3303/CET1761196
dc.identifier.urihttp://hdl.handle.net/2263/63771
dc.language.isoenen_ZA
dc.publisherThe Italian Association of Chemical Engineeringen_ZA
dc.rights© 2017, AIDIC Servizi S.r.l.en_ZA
dc.subjectCoal gasification stripped gas liquor (CGSGL)en_ZA
dc.subjectBacteriaen_ZA
dc.subjectBackpropagationen_ZA
dc.subjectRhodococcus erythropolisen_ZA
dc.subjectPseudomonas plecoglossicidaen_ZA
dc.subjectPrediction of performanceen_ZA
dc.subjectMoving bed biofilm reactors (MBBR)en_ZA
dc.subjectHeterocyclic compounden_ZA
dc.subjectEnterobacter cloacaeen_ZA
dc.subjectCoal-gasification wastewatersen_ZA
dc.subjectBack-propagation artificial neural networken_ZA
dc.subjectWastewater treatmenten_ZA
dc.subjectPollutionen_ZA
dc.subjectPhenolsen_ZA
dc.subjectOrganic pollutantsen_ZA
dc.subjectOrganic compoundsen_ZA
dc.subjectNitrogenen_ZA
dc.subjectNeural networksen_ZA
dc.subjectCoal gasificationen_ZA
dc.subjectChemicals removal (water treatment)en_ZA
dc.subjectChemical compoundsen_ZA
dc.subjectBiofilmsen_ZA
dc.subjectBiodiversityen_ZA
dc.subjectAromatic compoundsen_ZA
dc.subjectAmmoniaen_ZA
dc.subjectChemical oxygen demand (COD)en_ZA
dc.titlePrediction of performance of the moving-bed biofilm pilot reactor using back-propagation artificial neural network (BP-ANN)en_ZA
dc.typeArticleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Rava_Prediction_2017.pdf
Size:
910.84 KB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: