Polytetrafluoroethylene : synthesis and characterization of the original extreme polymer

dc.contributor.authorPuts, Gerard Jacob
dc.contributor.authorCrouse, Philippus L.
dc.contributor.authorAmeduri, Bruno M.
dc.date.accessioned2019-03-06T08:23:07Z
dc.date.issued2019-01
dc.description.abstractThis Review aims to be a comprehensive, authoritative, and critical review of general interest to the chemistry community (both academia and industry) as it contains an extensive overview of all published data on the homopolymerization of tetrafluoroethylene (TFE), detailing the TFE homopolymerization process and the resulting chemical and physical properties. Several reviews and encyclopedia chapters on the properties and applications of fluoropolymers in general have been published, including various reviews that extensively report copolymers of TFE (listed below). Despite this, a thorough review of the specific methods of synthesis of the homopolymer, and the relationships between synthesis conditions and the physicochemical properties of the material prepared, has not been available. This Review intends to fill that gap. As known, PTFE and its marginally modified derivatives comprise some 60–65% of the total international fluoropolymer market with a global increase of ca. 7% per annum of its production. Numerous companies, such as Asahi Glass, Solvay Specialty Polymers, Daikin, DuPont/Chemours, Juhua, 3F, 3M/Dyneon, etc., produce TFE homopolymers. Such polymers, both high-molecular-mass materials and waxes, are chemically inert and hydrophobic and exhibit an excellent thermal stability as well as an exceptionally low coefficient of friction. These polymers find use in applications ranging from coatings and lubrication to pyrotechnics, and an extensive industry (electronic, aerospace, wires and cables, and textiles) has been built around them. South Africa, being the third largest producer of fluorspar (CaF2), the precursor to hydrogen fluoride and fluorine, has embarked on an industrial initiative to locally beneficiate its fluorspar reserves, with the local production of fluoropolymers being one projected outcome. As our manuscript focuses specifically on the homopolymerization of TFE (the starting point for all fluoropolymer industries), it will be of considerable use to start-up companies and other commercial entities looking to enter the fluoropolymer market, as well as to end-user companies. The manuscript commences with a short discussion on the synthesis and production of TFE (both at industrial and laboratory scales), including the safety aspects surrounding handling (because that monomer is regarded as explosive if brought into contact with oxygen due to the formation of peroxides), transport, and storage, and then expands into detailed discussions dealing with aspects such as the various additives used (buffers, chain transfer agents, surfactants, etc.), the solvent environment, and the reaction conditions. A further section reports the properties of PTFE with respect to the polymerization conditions as well as an overview on the specialized techniques used to characterize PTFE. Finally, the applications of PTFE in various fields, ranging from electrical insulation to tribological to medical applications, as well as chemically resistant coatings and pyrotechnics, are discussed.en_ZA
dc.description.departmentChemical Engineeringen_ZA
dc.description.embargo2020-01-28
dc.description.librarianhj2019en_ZA
dc.description.sponsorshipThe National Research Foundation of South Africa, the Department of Science and Technology’s FEI program, Pelchem SOC, and Reseau Français du Fluor (GIS).en_ZA
dc.description.urihttps://pubs.acs.org/journal/chreayen_ZA
dc.identifier.citationPuts, G.J., Crouse, P. & Ameduri, B.M. 2019, 'Polytetrafluoroethylene : synthesis and characterization of the original extreme polymer', Chemical Reviews, vol. 119, no. 3, pp. 1763-1805.en_ZA
dc.identifier.issn0009-2665 (print)
dc.identifier.issn1520-6890 (online)
dc.identifier.other10.1021/acs.chemrev.8b00458
dc.identifier.urihttp://hdl.handle.net/2263/68582
dc.language.isoenen_ZA
dc.publisherAmerican Chemical Societyen_ZA
dc.rightsThis document is the Accepted Manuscript version of a Published Work that appeared in final form in Chemical Reviews, © 2019 American Chemical Society after peer review and technical editing by the publisher.en_ZA
dc.subjectHomopolymerizationen_ZA
dc.subjectTetrafluoroethylene (TFE)en_ZA
dc.subjectPolytetrafluoroethyleneen_ZA
dc.subjectSynthesisen_ZA
dc.subjectCharacterizationen_ZA
dc.subjectExtreme polymeren_ZA
dc.titlePolytetrafluoroethylene : synthesis and characterization of the original extreme polymeren_ZA
dc.typePostprint Articleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Puts_Polytetrafluoroethylene_2019.pdf
Size:
7.47 MB
Format:
Adobe Portable Document Format
Description:
Postprint Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: