A Cas3-base editing tool for targetable in vivo mutagenesis

dc.contributor.authorZimmermann, Anna
dc.contributor.authorPrieto-Vivas, Julian E.
dc.contributor.authorGorkovskiy, Anton
dc.contributor.authorSteensels, Jan
dc.contributor.authorVan de Peer, Yves
dc.contributor.authorVerstrepen, Kevin J.
dc.date.accessioned2024-09-03T11:57:06Z
dc.date.available2024-09-03T11:57:06Z
dc.date.issued2023-06-09
dc.descriptionDATA AVAILABILITY : Data supporting the findings of thiswork are availablewithin the paper and its Supplementary Information files. The whole genome sequencing data and the Oxford Nanopore sequencing data generated in this study, as well as the Sanger sequencing data of the SEC14 locus, have been deposited in the NCBI Sequence Read Archive under accession code PRJNA974923. All yeast strains and plasmids described in this work are available upon request. Source data are provided with this paper.en_US
dc.description.abstractThe generation of genetic diversity via mutagenesis is routinely used for protein engineering and pathway optimization. Current technologies for random mutagenesis often target either the whole genome or relatively narrow windows. To bridge this gap, we developed CoMuTER (Confined Mutagenesis using a Type I-E CRISPR-Cas system), a tool that allows inducible and targetable, in vivo mutagenesis of genomic loci of up to 55 kilobases. CoMuTER employs the targetable helicase Cas3, signature enzyme of the class 1 type I-E CRISPR-Cas system, fused to a cytidine deaminase to unwind and mutate large stretches of DNA at once, including complete metabolic pathways. The tool increases the number of mutations in the target region 350-fold compared to the rest of the genome, with an average of 0.3 mutations per kilobase. We demonstrate the suitability of CoMuTER for pathway optimization by doubling the production of lycopene in Saccharomyces cerevisiae after a single round of mutagenesis.en_US
dc.description.departmentBiochemistryen_US
dc.description.departmentGeneticsen_US
dc.description.departmentMicrobiology and Plant Pathologyen_US
dc.description.librarianam2024en_US
dc.description.sdgNoneen_US
dc.description.urihttps://www.nature.com/ncomms/en_US
dc.identifier.citationZimmermann, A., Prieto-Vivas, J.E., Cautereels, C. et al. 2023, 'ACas3-base editing tool for targetable in vivo mutagenesis', Nature Communications, vol. 14, art. 3319. https://DOI.org/10.1038/s41467-023-39087-z.en_US
dc.identifier.issn10.1038/s41467-023-39087-z
dc.identifier.issn2041-1723 (online)
dc.identifier.urihttp://hdl.handle.net/2263/97992
dc.language.isoenen_US
dc.publisherNature Researchen_US
dc.rights© The Author(s) 2023. This article is licensed under a Creative Commons Attribution 4.0 International License.en_US
dc.subjectTechnologiesen_US
dc.subjectMutagenesisen_US
dc.subjectCoMuTERen_US
dc.subjectDeoxyribonucleic acid (DNA)en_US
dc.subjectConfined Mutagenesis using a Type I-E CRISPR-Cas system (CoMuTER)en_US
dc.titleA Cas3-base editing tool for targetable in vivo mutagenesisen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Zimmermann_Cas3Base_2023.pdf
Size:
2.47 MB
Format:
Adobe Portable Document Format
Description:
Article
Loading...
Thumbnail Image
Name:
Zimmermann_Cas3BaseSuppl_2023.xlsx
Size:
723.75 KB
Format:
Microsoft Excel XML
Description:
Supplementary Material

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: