Decentralized resource allocation-based multiagent deep learning in vehicular network

dc.contributor.authorMafuta, Armeline D.
dc.contributor.authorMaharaj, Bodhaswar Tikanath Jugpershad
dc.contributor.authorAlfa, Attahiru Sule
dc.contributor.emailu20808781@tuks.co.zaen_US
dc.date.accessioned2024-01-12T09:29:23Z
dc.date.available2024-01-12T09:29:23Z
dc.date.issued2023-03
dc.description.abstractResource allocation (RA) has a significant impact on vehicular network performance. With high mobility, RA is more challenging, as the number of vehicles in close proximity changes dynamically in the nonstationary environment. In this article, we propose a multiagent double deep Q-networks scheme to stabilize the system and maximize the sum-capacity of the vehicle-to-infrastructure (V2I) links, while satisfying the reliability and delay constraints for vehicle-to-vehicle (V2V) links. To avoid interference caused by unstable V2V links, a transmission mode selection is considered in the scheme design. In addition, we introduce a binarized weight algorithm to accelerate the deep neural network learning process and, therefore, improve the computational complexity of our scheme. Through extensive simulations and complexity analysis, we demonstrate that the proposed scheme yields excellent performance in terms of the sum-rate and probability rate of V2I and V2V communication modes. We also compare the proposed scheme with binarized weights with other algorithms in terms of accuracy evaluation.en_US
dc.description.departmentElectrical, Electronic and Computer Engineeringen_US
dc.description.librarianhj2023en_US
dc.description.sdgNoneen_US
dc.description.urihttps://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4267003en_US
dc.identifier.citationMafuta, A.D., Maharaj, B.T.J. & Alfa, A.S. 2023, 'Decentralized resource allocation-based multiagent deep learning in vehicular network', IEEE Systems Journal, vol. 17, no. 1, pp. 87-98, doi : 10.1109/JSYST.2022.3163235.en_US
dc.identifier.issn1932-8184 (print)
dc.identifier.issn1937-9234 (online)
dc.identifier.issn2373-7816 (CD)
dc.identifier.other10.1109/JSYST.2022.3163235
dc.identifier.urihttp://hdl.handle.net/2263/93938
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.rightsThis work is licensed under a Creative Commons Attribution 4.0 License.en_US
dc.subjectResource allocationen_US
dc.subjectVehicle-to-infrastructureen_US
dc.subjectReliabilityen_US
dc.subjectSymbolsen_US
dc.subjectUplinken_US
dc.subjectTrainingen_US
dc.subjectResource managementen_US
dc.subjectQuality of serviceen_US
dc.subjectBinarized weightsen_US
dc.subjectDeep reinforcement learning (DRL)en_US
dc.subjectMarkovian decision process (MDP)en_US
dc.subjectMultiagent schemeen_US
dc.subjectVehicular communicationen_US
dc.titleDecentralized resource allocation-based multiagent deep learning in vehicular networken_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Mafuta_Decentralized_2023.pdf
Size:
1.16 MB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: