Nonlinear regression in dynamic environments using particle swarm optimization

dc.contributor.authorKuranga, Cry
dc.contributor.authorPillay, Nelishia
dc.contributor.emailnpillay@cs.up.ac.zaen_ZA
dc.date.accessioned2021-09-16T09:00:09Z
dc.date.available2021-09-16T09:00:09Z
dc.date.issued2020-11
dc.description.abstractThis paper extends a PSO-based nonlinear regression technique to dynamic environments whereby the induced model dynamically adjusts when an environmental change is detected. As such, this work hybridizes a PSO designed for dynamic environments with a least-squares approximation technique to induce structurally optimal nonlinear regression models. The proposed model was evaluated experimentally and compared with the dynamic PSOs, namely multi-swarm, reinitialized, and charged PSOs, to optimize the model structure and the regression parameters in the dynamic environment. The obtained results show that the proposed model was adaptive to the changing environment to yield structurally optimal models which consequently, outperformed the dynamic PSOs for the given datasets.en_ZA
dc.description.departmentComputer Scienceen_ZA
dc.description.librarianhj2021en_ZA
dc.description.urihttp://link.springer.combookseries/558en_ZA
dc.identifier.citationKuranga C., Pillay N. (2020) Nonlinear Regression in Dynamic Environments Using Particle Swarm Optimization. In: Martín-Vide C., Vega-Rodríguez M.A., Yang MS. (eds) Theory and Practice of Natural Computing. TPNC 2020. Lecture Notes in Computer Science, vol 12494. Springer, Cham. https://doi.org/10.1007/978-3-030-63000-3_11.en_ZA
dc.identifier.isbn978-3-030-63000-3 (online)
dc.identifier.isbn978-3-030-62999-1 (print)
dc.identifier.issn0302-9743 (print)
dc.identifier.issn1611-3349 (online)
dc.identifier.other10.1007/978-3-030-63000-3_11
dc.identifier.urihttp://hdl.handle.net/2263/81875
dc.language.isoenen_ZA
dc.publisherSpringeren_ZA
dc.rights© IFIP International Federation for Information Processing 2020. The original publication is available at : http://link.springer.combookseries/558.en_ZA
dc.subjectParticle swarm optimization (PSO)en_ZA
dc.subjectDynamic PSOen_ZA
dc.subjectLeast-squaresen_ZA
dc.subjectNonlinear regressionen_ZA
dc.subjectDynamic environmentsen_ZA
dc.titleNonlinear regression in dynamic environments using particle swarm optimizationen_ZA
dc.typePostprint Articleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Kuranga_Nonlinear_2020.pdf
Size:
919.68 KB
Format:
Adobe Portable Document Format
Description:
Postprint Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: