Tuning optimization algorithms under multiple objective function evaluation budgets

dc.contributor.authorDymond, Antoine Smith Dryden
dc.contributor.authorEngelbrecht, Andries P.
dc.contributor.authorKok, Schalk
dc.contributor.authorHeyns, P.S. (Philippus Stephanus)
dc.date.accessioned2015-07-14T06:19:40Z
dc.date.available2015-07-14T06:19:40Z
dc.date.issued2015-06
dc.description.abstractMost sensitivity analysis studies of optimization algorithm control parameters are restricted to a single objective function evaluation (OFE) budget. This restriction is problematic because the optimality of control parameter values is dependent not only on the problem’s fitness landscape, but also on the OFE budget available to explore that landscape. Therefore the OFE budget needs to be taken into consideration when performing control parameter tuning. This article presents a new algorithm (tMOPSO) for tuning the control parameter values of stochastic optimization algorithms under a range of OFE budget constraints. Specifically, for a given problem tMOPSO aims to determine multiple groups of control parameter values, each of which results in optimal performance at a different OFE budget. To achieve this, the control parameter tuning problem is formulated as a multi-objective optimization problem. Additionally, tMOPSO uses a noise-handling strategy and control parameter value assessment procedure, which are specialized for tuning stochastic optimization algorithms. Conducted numerical experiments provide evidence that tMOPSO is effective at tuning under multiple OFE budget constraints.en_ZA
dc.description.librarianhb2015en_ZA
dc.description.sponsorshipNational Research Foundation (NRF) of South Africa.en_ZA
dc.description.urihttp://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4235en_ZA
dc.identifier.citationDymond, ASD, Engelbrecht, AP, Kok, S & Heyns, PS 2015, 'Tuning optimization algorithms under multiple objective function evaluation budgets', IEEE Transactions on Evolutionary Computation, vol. 19, no. 3, art. #6813669, pp. 341-358.en_ZA
dc.identifier.issn1089-778X
dc.identifier.other10.1109/TEVC.2014.2322883
dc.identifier.urihttp://hdl.handle.net/2263/48649
dc.language.isoenen_ZA
dc.publisherInstitute of Electrical and Electronics Engineersen_ZA
dc.rights© 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.en_ZA
dc.subjectOptimization algorithmsen_ZA
dc.subjectMultiple objective functionen_ZA
dc.subjectEvaluation budgetsen_ZA
dc.subjectObjective function evaluation (OFE)en_ZA
dc.subjectControl parameter values (CPVs)en_ZA
dc.subjectTuning multiobjective particle swarm optimization (tMOPSO)en_ZA
dc.subject.otherEngineering, built environment and information technology articles SDG-09
dc.subject.otherSDG-09: Industry, innovation and infrastructure
dc.subject.otherEngineering, built environment and information technology articles SDG-08
dc.subject.otherSDG-08: Decent work and economic growth
dc.subject.otherEngineering, built environment and information technology articles SDG-12
dc.subject.otherSDG-12: Responsible consumption and production
dc.titleTuning optimization algorithms under multiple objective function evaluation budgetsen_ZA
dc.typePostprint Articleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dymond_Tuning_2015.pdf
Size:
1.57 MB
Format:
Adobe Portable Document Format
Description:
Postprint Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: