Universal problem for Kähler differentials in A-modules : non-commutative and commutative cases

dc.contributor.authorAbel, M.
dc.contributor.authorNtumba, Patrice P.
dc.contributor.emailpatrice.ntumba@up.ac.zaen_US
dc.date.accessioned2014-09-23T07:54:49Z
dc.date.available2014-09-23T07:54:49Z
dc.date.issued2014-08
dc.description.abstractLet A be an associative and unital K-algebra sheaf, where K is a commutative ring sheaf, and ε an (A, A)-bimodule, that is, a sheaf of (A, A)-bimodules. We construct an (A, A)-bimodulc which is K-isomorphic with the K-module D K (A, ε) of germs of K-derivations. A similar isomorphism is obtained, this time around with respect to A, between the K-module D K (A, ε) with the A-module Hom A (Ω K (A), ε). where A, in addition of being associative and unital, is assumed to be commutative, and Ω K (A) denotes the A-module of germs of Kähler differentials. Finally, we expound on functoriality of Kähler differentials.en_US
dc.description.librarianhb2014en_US
dc.description.urihttp://link.springer.com/journal/13226en_US
dc.identifier.citationAbel, M & Ntumba, PP 2014, 'Universal problem for Kähler differentials in A-modules : non-commutative and commutative cases', Indian Journal of Pure and Applied Mathematics, vol. 45, no. 5, pp. 497-511.en_US
dc.identifier.issn0019-5588 (print)
dc.identifier.issn0975-7465 (online)
dc.identifier.urihttp://hdl.handle.net/2263/42073
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rights© Indian National Science Academy.The original publication is available at : http://link.springer.com/journal/13226.en_US
dc.subjectUniversal problemen_US
dc.subjectA-modulesen_US
dc.subjectNon-commutativeen_US
dc.subjectCommutative casesen_US
dc.titleUniversal problem for Kähler differentials in A-modules : non-commutative and commutative casesen_US
dc.typePostprint Articleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Abel_Universal_2014.pdf
Size:
260.05 KB
Format:
Adobe Portable Document Format
Description:
Postprint Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: