On prevarieties of logic
dc.contributor.author | Moraschini, Tommaso | |
dc.contributor.author | Raftery, James G. | |
dc.contributor.email | james.raftery@up.ac.za | en_ZA |
dc.date.accessioned | 2019-10-01T10:08:20Z | |
dc.date.issued | 2019-09 | |
dc.description.abstract | It is proved that every prevariety of algebras is categorically equivalent to a ‘prevariety of logic’, i.e., to the equivalent algebraic semantics of some sentential deductive system. This allows us to show that no nontrivial equation in the language ∧,∨,∘ holds in the congruence lattices of all members of every variety of logic, and that being a (pre)variety of logic is not a categorical property. | en_ZA |
dc.description.department | Mathematics and Applied Mathematics | en_ZA |
dc.description.embargo | 2020-09-01 | |
dc.description.librarian | hj2019 | en_ZA |
dc.description.uri | https://link.springer.com/journal/12 | en_ZA |
dc.identifier.citation | Moraschini, T. & Raftery, J.G. On prevarieties of logic. Algebra universalis (2019) 80: 37. https://doi.org/10.1007/s00012-019-0611-7. | en_ZA |
dc.identifier.issn | 0002-5240 (print) | |
dc.identifier.issn | 1420-8911 (online) | |
dc.identifier.other | 10.1007/s00012-019-0611-7 | |
dc.identifier.uri | http://hdl.handle.net/2263/71517 | |
dc.language.iso | en | en_ZA |
dc.publisher | Springer | en_ZA |
dc.rights | © Springer Nature Switzerland AG 2019. The original publication is available at : https://link.springer.com/journal/12. | en_ZA |
dc.subject | Prevariety of logic | en_ZA |
dc.subject | Algebraizable logic | en_ZA |
dc.subject | Maltsev class | en_ZA |
dc.title | On prevarieties of logic | en_ZA |
dc.type | Postprint Article | en_ZA |