On prevarieties of logic

dc.contributor.authorMoraschini, Tommaso
dc.contributor.authorRaftery, James G.
dc.contributor.emailjames.raftery@up.ac.zaen_ZA
dc.date.accessioned2019-10-01T10:08:20Z
dc.date.issued2019-09
dc.description.abstractIt is proved that every prevariety of algebras is categorically equivalent to a ‘prevariety of logic’, i.e., to the equivalent algebraic semantics of some sentential deductive system. This allows us to show that no nontrivial equation in the language ∧,∨,∘ holds in the congruence lattices of all members of every variety of logic, and that being a (pre)variety of logic is not a categorical property.en_ZA
dc.description.departmentMathematics and Applied Mathematicsen_ZA
dc.description.embargo2020-09-01
dc.description.librarianhj2019en_ZA
dc.description.urihttps://link.springer.com/journal/12en_ZA
dc.identifier.citationMoraschini, T. & Raftery, J.G. On prevarieties of logic. Algebra universalis (2019) 80: 37. https://doi.org/10.1007/s00012-019-0611-7.en_ZA
dc.identifier.issn0002-5240 (print)
dc.identifier.issn1420-8911 (online)
dc.identifier.other10.1007/s00012-019-0611-7
dc.identifier.urihttp://hdl.handle.net/2263/71517
dc.language.isoenen_ZA
dc.publisherSpringeren_ZA
dc.rights© Springer Nature Switzerland AG 2019. The original publication is available at : https://link.springer.com/journal/12.en_ZA
dc.subjectPrevariety of logicen_ZA
dc.subjectAlgebraizable logicen_ZA
dc.subjectMaltsev classen_ZA
dc.titleOn prevarieties of logicen_ZA
dc.typePostprint Articleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Moraschini_On_2019.pdf
Size:
335.99 KB
Format:
Adobe Portable Document Format
Description:
Postprint Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: