Efficient estimation and validation of shrinkage estimators in big data analytics

dc.contributor.authorDu Plessis, Salomi
dc.contributor.authorArashi, Mohammad
dc.contributor.authorMaribe, Gaonyalelwe
dc.contributor.authorMillard, Salomon M.
dc.contributor.emailu15176658@tuks.co.zaen_US
dc.date.accessioned2024-05-30T10:07:44Z
dc.date.available2024-05-30T10:07:44Z
dc.date.issued2023-11
dc.descriptionDATA AVAILABILITY STATEMENT: Data is available from the authors on request.en_US
dc.description.abstractShrinkage estimators are often used to mitigate the consequences of multicollinearity in linear regression models. Despite the ease with which these techniques can be applied to small- or moderate-size datasets, they encounter significant challenges in the big data domain. Some of these challenges are that the volume of data often exceeds the storage capacity of a single computer and that the time required to obtain results becomes infeasible due to the computational burden of a high volume of data. We propose an algorithm for the efficient model estimation and validation of various well-known shrinkage estimators to be used in scenarios where the volume of the data is large. Our proposed algorithm utilises sufficient statistics that can be computed and updated at the row level, thus minimizing access to the entire dataset. A simulation study, as well as an application on a real-world dataset, illustrates the efficiency of the proposed approach.en_US
dc.description.departmentStatisticsen_US
dc.description.sdgSDG-08:Decent work and economic growthen_US
dc.description.sdgSDG-09: Industry, innovation and infrastructureen_US
dc.description.sponsorshipIran National Science Foundation.en_US
dc.description.urihttps://www.mdpi.com/journal/mathematicsen_US
dc.identifier.citationdu Plessis, S.; Arashi, M.; Maribe, G.; Millard, S.M. Efficient Estimation and Validation of Shrinkage Estimators in Big Data Analytics. Mathematics 2023, 11, 4632. https://doi.org/10.3390/math11224632.en_US
dc.identifier.issn2227-7390 (online)
dc.identifier.other10.3390/math11224632
dc.identifier.urihttp://hdl.handle.net/2263/96300
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.rights© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.en_US
dc.subjectBig dataen_US
dc.subjectEfficient computationen_US
dc.subjectLiu estimatoren_US
dc.subjectMatrix of sufficient statisticsen_US
dc.subjectMulticollinearityen_US
dc.subjectRidge estimatoren_US
dc.subjectSDG-08: Decent work and economic growthen_US
dc.titleEfficient estimation and validation of shrinkage estimators in big data analyticsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DuPlessis_Efficient_2023.pdf
Size:
436.48 KB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: