A nonparametric exponentially weighted moving average signed-rank chart for monitoring location

dc.contributor.authorGraham, Marien Alet
dc.contributor.authorChakraborti, Subhabrata
dc.contributor.authorHuman, Schalk William
dc.contributor.emailmarien.graham@up.ac.zaen_US
dc.date.accessioned2012-07-10T07:47:52Z
dc.date.available2012-07-10T07:47:52Z
dc.date.issued2011-08
dc.description.abstractNonparametric control charts can provide a robust alternative in practice to the data analyst when there is a lack of knowledge about the underlying distribution. A nonparametric exponentially weighted moving average (NPEWMA) control chart combines the advantages of a nonparametric control chart with the better shift detection properties of a traditional EWMA chart. A NPEWMA chart for the median of a symmetric continuous distribution was introduced by Amin and Searcy (1991) using the Wilcoxon signed-rank statistic (see Gibbons and Chakraborti, 2003). This is called the nonparametric exponentially weighted moving average Signed-Rank (NPEWMA-SR) chart. However, important questions remained unanswered regarding the practical implementation as well as the performance of this chart. In this paper we address these issues with a more indepth study of the two-sided NPEWMA-SR chart. A Markov chain approach is used to compute the run-length distribution and the associated performance characteristics. Detailed guidelines and recommendations for selecting the chart’s design parameters for practical implementation are provided along with illustrative examples. An extensive simulation study is done on the performance of the chart including a detailed comparison with a number of existing control charts, including the traditional EWMA chart for subgroup averages and some nonparametric charts i.e. runs-rules enhanced Shewhart-type SR charts and the NPEWMA chart based on signs. Results show that the NPEWMA-SR chart performs just as well as and in some cases better than the competitors. A summary and some concluding remarks are given.en
dc.description.librariannf2012en
dc.description.urihttp://www.elsevier.com/locate/csdaen_US
dc.identifier.citationM.A. Graham, S. Chakraborti, S.W. Human, A nonparametric exponentially weighted moving average signed-rank chart for monitoring location, Computational Statistics & Data Analysis, vol. 55, no. 8, pp. 2490-2503 (2011), doi:10.1016/j.csda.2011.02.013.en
dc.identifier.issn0167-9473 (print)
dc.identifier.issn1872-7352 (online)
dc.identifier.other10.1016/j.csda.2011.02.013
dc.identifier.urihttp://hdl.handle.net/2263/19376
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2011 Elsevier. All rights reserved. Notice : this is the author’s version of a work that was accepted for publication in Computational Statistics & Data Analysis. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Computational Statistics & Data Analysis, vol.55, no. 8, 2011, doi.:10.1016/j.csda.2011.02.013.en_US
dc.subjectContaminated normalen
dc.subjectDistribution-free statisticsen
dc.subjectMarkov chainsen
dc.subject.lcshNonparametric statisticsen
dc.subject.lcshMathematical statisticsen
dc.subject.lcshProcess control -- Statistical methodsen
dc.titleA nonparametric exponentially weighted moving average signed-rank chart for monitoring locationen
dc.typePostprint Articleen

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Graham_Nonparametric(2011).pdf
Size:
857.03 KB
Format:
Adobe Portable Document Format
Description:
Postprint Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: