Bayesian energy measurement and verification analysis

dc.contributor.authorCarstens, Herman
dc.contributor.authorXia, Xiaohua
dc.contributor.authorYadavalli, Venkata S. Sarma
dc.contributor.emailsarma.yadavalli@up.ac.zaen_ZA
dc.date.accessioned2018-11-16T07:10:01Z
dc.date.available2018-11-16T07:10:01Z
dc.date.issued2018
dc.description.abstractEnergy Measurement and Verification (M&V) aims to make inferences about the savings achieved in energy projects, given the data and other information at hand. Traditionally, a frequentist approach has been used to quantify these savings and their associated uncertainties. We demonstrate that the Bayesian paradigm is an intuitive, coherent, and powerful alternative framework within which M&V can be done. Its advantages and limitations are discussed, and two examples from the industry-standard International Performance Measurement and Verification Protocol (IPMVP) are solved using the framework. Bayesian analysis is shown to describe the problem more thoroughly and yield richer information and uncertainty quantification results than the standard methods while not sacrificing model simplicity. We also show that Bayesian methods can be more robust to outliers. Bayesian alternatives to standard M&V methods are listed, and examples from literature are cited.en_ZA
dc.description.departmentIndustrial and Systems Engineeringen_ZA
dc.description.librarianam2018en_ZA
dc.description.urihttp://www.mdpi.com/journal/energiesen_ZA
dc.identifier.citationCarstens, H., Xia, X. & Yadavalli, S. 2018, 'Bayesian energy measurement and verification analysis', Energies, vol. 11, art. 380, pp. 1-20.en_ZA
dc.identifier.issn1996-1073 (online)
dc.identifier.other10.3390/en11020380
dc.identifier.urihttp://hdl.handle.net/2263/67271
dc.language.isoenen_ZA
dc.publisherMDPI Publishingen_ZA
dc.rights© 2018 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).en_ZA
dc.subjectStatisticsen_ZA
dc.subjectUncertaintyen_ZA
dc.subjectRegressionen_ZA
dc.subjectSamplingen_ZA
dc.subjectOutlieren_ZA
dc.subjectProbabilisticen_ZA
dc.subjectBayesian networksen_ZA
dc.subjectBayesian alternativesen_ZA
dc.subjectMeasurementen_ZA
dc.subjectVerificationen_ZA
dc.subjectPerformance measurementen_ZA
dc.subjectUncertainty quantificationsen_ZA
dc.subjectUncertainty analysisen_ZA
dc.titleBayesian energy measurement and verification analysisen_ZA
dc.typeArticleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Carstens_Bayesian_2018.pdf
Size:
363.24 KB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: