Convergence for a splitting-up scheme for the 3D stochastic Navier-Stokes-α Model
dc.contributor.author | Deugoue, Gabriel | |
dc.contributor.author | Sango, Mamadou | |
dc.date.accessioned | 2014-06-25T09:27:03Z | |
dc.date.issued | 2014-02 | |
dc.description.abstract | We propose and analyze a splitting-up scheme for the numerical approximation of the 3D stochastic Navier-Stokes- model. We prove the convergence of the scheme to the unique variational solution of the 3D stochastic Navier-Stokes- a model when the time step tends to zero | en_US |
dc.description.librarian | hb2014 | en_US |
dc.description.sponsorship | Claude Leon Foundation Postdoctoral Fellowship and the University of Pretoria | en_US |
dc.description.uri | http://www.tandfonline.com/loi/lsaa20 | en_US |
dc.identifier.citation | Gabriel Deugoue & Mamadou Sango (2014) Convergence for a Splitting-Up Scheme for the 3D Stochastic Navier-Stokes-α Model, Stochastic Analysis and Applications, 32:2, 253-279, DOI: 10.1080/07362994.2013.862359 | en_US |
dc.identifier.issn | 0736-2994 (print) | |
dc.identifier.issn | 1532-9356 (online) | |
dc.identifier.other | 10.1080/07362994.2013.862359 | |
dc.identifier.uri | http://hdl.handle.net/2263/40380 | |
dc.language.iso | en | en_US |
dc.publisher | Taylor & Francis | en_US |
dc.rights | © Taylor & Francis Group, LLC. This is an electronic version of an article published in Stochastic analysis and applications, vol. 32, no. 2, pp. 253-279, 2014. doi : 10.1080/07362994.2013.862359 Stochastic analysis and applications is available online at : http://www.tandfonline.com/loi/lsaa20. | en_US |
dc.subject | Splitting-up scheme | en_US |
dc.subject | Compactness | en_US |
dc.subject | Tightness | en_US |
dc.subject | Stochastic Navier-Stokes-α Model | en_US |
dc.title | Convergence for a splitting-up scheme for the 3D stochastic Navier-Stokes-α Model | en_US |
dc.type | Postprint Article | en_US |
Files
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: