Strong solutions for the stochastic 3D LANS-α model driven by non-Gaussian Lévy noise

dc.contributor.authorDeugoue, Gabriel
dc.contributor.authorSango, Mamadou
dc.date.accessioned2014-10-02T10:21:59Z
dc.date.issued2015-06
dc.description.abstractWe establish the existence, uniqueness and approximation of the strong solutions for the stochastic 3D LANS- model driven by a non-Gaussian L evy noise. Moreover, we also study the stability of solutions. In particular, we prove that under some conditions on the forcing terms, the strong solution converges exponentially in the mean square and almost surely exponentially to the stationary solution.en_US
dc.description.embargo2016-06-30
dc.description.librarianhb2014en_US
dc.description.sponsorshipClaude Leon Foundation Postdoctoral Fellowshipand the National Research Foundation of South Africaen_US
dc.description.urihttp://www.worldscientific.comen_US
dc.identifier.citationDeugoue, G & Sango, M 2015, 'Strong solutions for the stochastic 3D LANS-α model driven by non-Gaussian Lévy noise', Stochastics and Dynamics, vol. 15, no. 2, pp. 1-38.en_US
dc.identifier.issn0219-4937 (print)
dc.identifier.issn1793-6799 (online)
dc.identifier.other10.1142/S0219493715500112
dc.identifier.urihttp://hdl.handle.net/2263/42206
dc.language.isoenen_US
dc.publisherWorld Scientific Publishingen_US
dc.rights© 2014 World Scientific Publishing Co. All rights reserved.en_US
dc.subjectLANS-cx modelen_US
dc.subjectLévy noiseen_US
dc.subjectStrong solutionsen_US
dc.subjectGalerkin approximationen_US
dc.subjectExponential stabilityen_US
dc.titleStrong solutions for the stochastic 3D LANS-α model driven by non-Gaussian Lévy noiseen_US
dc.typePostprint Articleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Deugoue_Strong_2015.pdf
Size:
337.28 KB
Format:
Adobe Portable Document Format
Description:
Postprint Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: