Are there phylogenetic differences in salivary tannin-binding proteins between browsers and grazers, and ruminants and hindgut fermenters?
dc.contributor.author | Ward, David | |
dc.contributor.author | Schmitt, Melissa H. | |
dc.contributor.author | Shrader, A.M. (Adrian) | |
dc.date.accessioned | 2020-10-02T05:37:01Z | |
dc.date.available | 2020-10-02T05:37:01Z | |
dc.date.issued | 2020-10 | |
dc.description.abstract | While feeding, mammalian browsers (primarily eat woody plants) encounter secondary metabolites such as tannins. Browsers may bind these tannins using salivary proteins, whereas mammalian grazers (primarily eat grasses that generally lack tannins) likely would not. Ruminant browsers rechew their food (ruminate) to increase the effectiveness of digestion, which may make them more effective at binding tannins than nonruminants. Few studies have included a sufficient number of species to consider possible scaling with body mass or phylogenetic effects on salivary proteins. Controlling for phylogeny, we ran inhibition radial diffusion assays of the saliva of 28 species of African herbivores that varied in size, feeding strategy, and digestive system. We could not detect the presence of salivary proline-rich proteins that bind tannins in any of these species. However, using the inhibition radial diffusion assay, we found considerable abilities to cope with tannins in all species, albeit to varying degrees. We found no differences between browsers and grazers in the effectiveness of their salivary proteins to bind to and precipitate tannins, nor between ruminants and nonruminants, or scaling with body mass. Three species bound all tannins, but their feeding niches included one browser (gray duiker), one mixed feeder (bush pig), and one grazer (red hartebeest). Five closely related species of small ruminant browsers were very effective in binding tannins. Megaherbivores, considered generalists on account of their large body size, were capable of binding tannins. However the grazing white rhinoceros was almost as effective at binding tannins as the megaherbivore browsers. We conclude, contrary to earlier predictions, that there were no differences in the relative salivary tannin-binding capability that was related to common ancestry (phylogeny) or to differences in body size. | en_ZA |
dc.description.department | Mammal Research Institute | en_ZA |
dc.description.department | Zoology and Entomology | en_ZA |
dc.description.librarian | am2020 | en_ZA |
dc.description.sponsorship | The National Research Foundation of South Africa, the Gay Langmuir Bursary from the University of KwaZulu-Natal and the Herrick Trust of Kent State University. | en_ZA |
dc.description.uri | http://www.ecolevol.org | en_ZA |
dc.identifier.citation | Ward D., Schmitt M.H., Shrader A.M. Are there phylogenetic differences in salivary tannin-binding proteins between browsers and grazers, and ruminants and hindgut fermenters?. Ecology and Evolution 2020;10:10426–10439. https://doi.org/10.1002/ece3.6698. | en_ZA |
dc.identifier.issn | 2045-7758 (online) | |
dc.identifier.other | 10.1002/ece3.6698 | |
dc.identifier.uri | http://hdl.handle.net/2263/76309 | |
dc.language.iso | en | en_ZA |
dc.publisher | Wiley Open Access | en_ZA |
dc.rights | © 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License. | en_ZA |
dc.subject | African megaherbivores | en_ZA |
dc.subject | Afrotheria | en_ZA |
dc.subject | Hindgut fermenters | en_ZA |
dc.subject | Ruminants | en_ZA |
dc.subject | Salivary proteins | en_ZA |
dc.subject | Tannins | en_ZA |
dc.title | Are there phylogenetic differences in salivary tannin-binding proteins between browsers and grazers, and ruminants and hindgut fermenters? | en_ZA |
dc.type | Article | en_ZA |
Files
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.75 KB
- Format:
- Item-specific license agreed upon to submission
- Description: