Structure-based energetics of protein interfaces guides foot-and-mouth disease virus vaccine design

dc.contributor.authorKotecha, Abhay
dc.contributor.authorSeago, Julian
dc.contributor.authorScott, Katherine Anne
dc.contributor.authorBurman, Alison
dc.contributor.authorLoureiro, Silvia
dc.contributor.authorRen, Jingshan
dc.contributor.authorPorta, Claudine
dc.contributor.authorGinn, Helen M.
dc.contributor.authorJackson, Terry
dc.contributor.authorPerez-Martin, Eva
dc.contributor.authorSiebert, C. Alistair
dc.contributor.authorPaul, Guntram
dc.contributor.authorHuiskonen, Juha T.
dc.contributor.authorJones, Ian M.
dc.contributor.authorEsnouf, Robert M.
dc.contributor.authorFry, Elizabeth E.
dc.contributor.authorMaree, Francois Frederick
dc.contributor.authorCharleston, Bryan
dc.contributor.authorStuart, David I.
dc.date.accessioned2016-02-18T10:37:44Z
dc.date.issued2015-10
dc.description.abstractVirus capsids are primed for disassembly, yet capsid integrity is key to generating a protective immune response. Foot-and-mouth disease virus (FMDV) capsids comprise identical pentameric protein subunits held together by tenuous noncovalent interactions and are often unstable. Chemically inactivated or recombinant empty capsids, which could form the basis of future vaccines, are even less stable than live virus. Here we devised a computational method to assess the relative stability of protein-protein interfaces and used it to design improved candidate vaccines for two poorly stable, but globally important, serotypes of FMDV: O and SAT2. We used a restrained molecular dynamics strategy to rank mutations predicted to strengthen the pentamer interfaces and applied the results to produce stabilized capsids. Structural analyses and stability assays confirmed the predictions, and vaccinated animals generated improved neutralizing-antibody responses to stabilized particles compared to parental viruses and wild-type capsids.en_ZA
dc.description.embargo2016-04-30
dc.description.librarianhb2015en_ZA
dc.description.sponsorshipWellcome Trust (WT) for a Translation Award to fund this work (grant no. 089755). Biotechnology and Biological Sciences Research Council Institute Strategic Programme on Livestock Viral Diseases at The Pirbright Institute. The Oxford Particle Imaging Centre electron microscopy facility was founded by a WT Joint Infrastructure Fund award (060208/Z/00/Z) and is supported by a WT equipment grant (093305/Z/10/Z). The WT, UK Medical Research Council (MRC) and Biotechnology and Biology Research Council (grant no. G100099).en_ZA
dc.description.urihttp://www.nature.com/nsmben_ZA
dc.identifier.citationKotecha, K, Seago, J, Scott, KA, Burman, A, Loureiro, S, Ren, J, Porta, C, Ginn, HM, Jackson, T, Perez-Martin, E, Siebert, CA, Paul, G, Huiskonen, JT, Jones, IM, Esnouf, RM, Fry, EE, Maree, FF, Charleston, B & Stuart, D 2015, 'Structure-based energetics of protein interfaces guides foot-and-mouth disease virus vaccine design', Nature Structural and Molecular Biology, vol. 22, no. 10, pp. 1-10.en_ZA
dc.identifier.issn1545-9993 (print)
dc.identifier.issn1545-9985 (online)
dc.identifier.other10.1038/nsmb.3096
dc.identifier.urihttp://hdl.handle.net/2263/51454
dc.language.isoenen_ZA
dc.publisherNature Publishing Groupen_ZA
dc.rightsNature Publishing Groupen_ZA
dc.subjectFoot-and-mouth disease virus (FMDV)en_ZA
dc.subjectProtein interfaces guidesen_ZA
dc.subjectStructural analysesen_ZA
dc.subjectStabilityen_ZA
dc.titleStructure-based energetics of protein interfaces guides foot-and-mouth disease virus vaccine designen_ZA
dc.typePostprint Articleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Kotecha_StructureBased_2015.pdf
Size:
4.57 MB
Format:
Adobe Portable Document Format
Description:
Postprint Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: