Computational methods applied to a skewed generalized normal family

dc.contributor.authorBekker, Andriette, 1958-
dc.contributor.authorFerreira, Johannes Theodorus
dc.contributor.authorArashi, Mohammad
dc.contributor.authorRowland, B.W.
dc.contributor.emailjohan.ferreira@up.ac.zaen_ZA
dc.date.accessioned2019-01-15T11:23:10Z
dc.date.issued2020
dc.description.abstractSome characteristics of the normal distribution may not be ideal to model in many applications. We develop a skew generalized normal (SGN) distribution by applying a skewing method to a generalized normal distribution, and study some meaningful statistical characteristics. Computational methods to approximate, and a well-constructed efficient computational approach to estimate these characteristics, are presented. A stochastic representation of this distribution is derived and numerically implemented. The skewing method is extended to the elliptical class resulting in a more general framework for skewing symmetric distributions. The proposed distribution is applied in a fitting context and to approximate particular binomial distributions.en_ZA
dc.description.departmentStatisticsen_ZA
dc.description.embargo2019-12-31
dc.description.librarianhj2019en_ZA
dc.description.sponsorshipThe National Research Foundation, South Africa (Grant number: 91497; 109214; 102640).en_ZA
dc.description.urihttp://www.tandfonline.com/loi/lssp20en_ZA
dc.identifier.citationA. Bekker, J. T. Ferreira, M. Arashi & B. W. Rowland (2020): Computational methods applied to a skewed generalized normal family, Communications in Statistics - Simulation and Computation 49(11): 2930-2943, DOI: 10.1080/03610918.2018.1530785.en_ZA
dc.identifier.issn0361-0918 (print)
dc.identifier.issn1532-4141 (online)
dc.identifier.other10.1080/03610918.2018.1530785
dc.identifier.urihttp://hdl.handle.net/2263/68149
dc.language.isoenen_ZA
dc.publisherTaylor and Francisen_ZA
dc.rights© 2018 Taylor & Francis Group, LLC. This is an electronic version of an article published in Communications in Statistics : Simulation and Computation, vol. 49, no. 11, pp. 2930-2943, 2020. doi : 10.1080/03610918.2018.1530785. Communications in Statistics : Simulation and Computation is available online at : http://www.tandfonline.comloi/lssp20.en_ZA
dc.subjectApproximating binomial distributionen_ZA
dc.subjectSkew-normalen_ZA
dc.subjectStochastic representationen_ZA
dc.subjectComputational methodsen_ZA
dc.subjectSymmetric distributionsen_ZA
dc.subjectStatistical characteristicsen_ZA
dc.subjectGeneralized normal distributionen_ZA
dc.subjectBinomial distributionen_ZA
dc.subjectTransport propertiesen_ZA
dc.subjectStochastic systemsen_ZA
dc.subjectNormal distributionen_ZA
dc.subjectSkew generalized normal (SGN)en_ZA
dc.titleComputational methods applied to a skewed generalized normal familyen_ZA
dc.typePostprint Articleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bekker_Computational_2020.pdf
Size:
409.13 KB
Format:
Adobe Portable Document Format
Description:
Postprint Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: