Groups with a given number of nonpower subgroups
dc.contributor.author | Anabanti, Chimere S. | |
dc.contributor.author | Hart, S.B. | |
dc.contributor.email | chimere.anabanti@up.ac.za | en_US |
dc.date.accessioned | 2023-07-05T11:04:58Z | |
dc.date.issued | 2022-10 | |
dc.description.abstract | No group has exactly one or two nonpower subgroups. We classify groups containing exactly three nonpower subgroups and show that there is a unique finite group with exactly four nonpower subgroups. Finally, we show that given any integer k greater than 4 , there are infinitely many groups with exactly k nonpower subgroups. | en_US |
dc.description.department | Mathematics and Applied Mathematics | en_US |
dc.description.embargo | 2023-07-10 | |
dc.description.librarian | hj2023 | en_US |
dc.description.uri | https://www.cambridge.org/core/journals/bulletin-of-the-australian-mathematical-society | en_US |
dc.identifier.citation | Anabanti, C.S. & Hart, S.B. 2022, 'Groups with a given number of nonpower subgroups', Bulletin of the Australian Mathematical Society, vol. 106, no. 2, pp. 315-319, doi : 10.1017/S0004972721001179. | en_US |
dc.identifier.issn | 0004-9727 (print) | |
dc.identifier.issn | 1755-1633 (online) | |
dc.identifier.other | 10.1017/S0004972721001179 | |
dc.identifier.uri | http://hdl.handle.net/2263/91281 | |
dc.language.iso | en | en_US |
dc.publisher | Cambridge University Press | en_US |
dc.rights | © The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc. | en_US |
dc.subject | Counting subgroups | en_US |
dc.subject | Nonpower subgroups | en_US |
dc.subject | Finite groups | en_US |
dc.title | Groups with a given number of nonpower subgroups | en_US |
dc.type | Postprint Article | en_US |