Investors’ uncertainty and forecasting stock market volatility

dc.contributor.authorLiu, Ruipeng
dc.contributor.authorGupta, Rangan
dc.date.accessioned2022-07-01T11:57:03Z
dc.date.available2022-07-01T11:57:03Z
dc.date.issued2022
dc.description.abstractThis article examines whether incorporating investors’ uncertainty, as captured by the conditional volatility of sentiment, can help forecasting volatility of stock markets. In this regard, using the Markov-switching multifractal (MSM) model, we find that investors’ uncertainty can substantially increase the accuracy of the forecasts of stock market volatility according to the forecast encompassing test. We further provide evidence that the MSM outperforms the dynamic conditional correlation-generalized autoregressive conditional heteroskedasticity (DCC-GARCH) model.en_US
dc.description.departmentEconomicsen_US
dc.description.librarianhj2022en_US
dc.description.urihttps://www.tandfonline.com/loi/hbhf20en_US
dc.identifier.citationRuipeng Liu & Rangan Gupta (2022) Investors’ Uncertainty and Forecasting Stock Market Volatility, Journal of Behavioral Finance, 23:3, 327-337, DOI: 10.1080/15427560.2020.1867551.en_US
dc.identifier.issn1542-7560 (print)
dc.identifier.issn1542-7579 (online)
dc.identifier.other10.1080/15427560.2020.1867551
dc.identifier.urihttps://repository.up.ac.za/handle/2263/86027
dc.language.isoenen_US
dc.publisherRoutledgeen_US
dc.rights© 2021 Taylor and Francis. This is an submitted version of an article published in Journal of Behavioral Finances, vol. 23, no. 3, pp. 327-337, 2022. doi : 10.1080/15427560.2020.1867551. Journal of Behavioral Finance is available online at : https://www.tandfonline.com/loi/hbhf20.en_US
dc.subjectInvestors’ uncertaintyen_US
dc.subjectStock market risken_US
dc.subjectMarkov-switching multifractal (MSM) modelen_US
dc.subjectVolatility forecastingen_US
dc.titleInvestors’ uncertainty and forecasting stock market volatilityen_US
dc.typePreprint Articleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Liu_Investors_2022.pdf
Size:
158.66 KB
Format:
Adobe Portable Document Format
Description:
Preprint Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: