Experimental exploration of hybrid nanofluids as energy-efficient fluids in solar and thermal energy storage applications

dc.contributor.authorYasmin, Humaira
dc.contributor.authorGiwa, Solomon O.
dc.contributor.authorNoor, Saima
dc.contributor.authorSharifpur, Mohsen
dc.contributor.emailmohsen.sharifpur@up.ac.zaen_US
dc.date.accessioned2024-08-30T11:24:19Z
dc.date.available2024-08-30T11:24:19Z
dc.date.issued2023-01-09
dc.descriptionDATA AVAILABILITY STATEMENT : Not applicable.en_US
dc.description.abstractIn response to the issues of environment, climate, and human health coupled with the growing demand for energy due to increasing population and technological advancement, the concept of sustainable and renewable energy is presently receiving unprecedented attention. To achieve these feats, energy savings and efficiency are crucial in terms of the development of energy-efficient devices and thermal fluids. Limitations associated with the use of conventional thermal fluids led to the discovery of energy-efficient fluids called “nanofluids, which are established to be better than conventional thermal fluids. The current research progress on nanofluids has led to the development of the advanced nanofluids coined “hybrid nanofluids” (HNFs) found to possess superior thermaloptical properties than conventional thermal fluids and nanofluids. This paper experimentally explored the published works on the application of HNFs as thermal transport media in solar energy collectors and thermal energy storage. The performance of hybrid nano-coolants and nanothermal energy storage materials has been critically reviewed based on the stability, types of hybrid nanoparticles (HNPs) and mixing ratios, types of base fluids, nano-size of HNPs, thermal and optical properties, flow, photothermal property, functionalization of HNPs, magnetic field intensity, and orientation, and j, subject to solar and thermal energy storage applications. Various HNFs engaged in different applications were observed to save energy and increase efficiency. The HNF-based media performed better than the mono nanofluid counterparts with complementary performance when the mixing ratios were optimized. In line with these applications, further experimental studies coupled with the influence of magnetic and electric fields on their performances were research gaps to be filled in the future. Green HNPs and base fluids are future biomaterials for HNF formulation to provide sustainable, low-cost, and efficient thermal transport and energy storage media.en_US
dc.description.departmentMechanical and Aeronautical Engineeringen_US
dc.description.librarianam2024en_US
dc.description.sdgSDG-07:Affordable and clean energyen_US
dc.description.sdgSDG-09: Industry, innovation and infrastructureen_US
dc.description.sponsorshipThe Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia.en_US
dc.description.urihttps://www.mdpi.com/journal/nanomaterialsen_US
dc.identifier.citationYasmin, H.; Giwa, S.O.; Noor, S.; Sharifpur, M. Experimental Exploration of Hybrid Nanofluids as Energy-Efficient Fluids in Solar and Thermal Energy Storage Applications. Nanomaterials 2023, 13, 278. https://Doi.org/10.3390/nano13020278.en_US
dc.identifier.issn2079-4991 (online)
dc.identifier.other10.3390/nano13020278
dc.identifier.urihttp://hdl.handle.net/2263/97948
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.rights© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.en_US
dc.subjectCoolantsen_US
dc.subjectEfficiencyen_US
dc.subjectEnergy storageen_US
dc.subjectHybrid nanofluidsen_US
dc.subjectSolar energyen_US
dc.subjectPhase change material (PCM)en_US
dc.subjectSDG-07: Affordable and clean energyen_US
dc.subjectSDG-09: Industry, innovation and infrastructureen_US
dc.subject.otherEngineering, built environment and information technology articles SDG-04
dc.subject.otherSDG-04: Quality education
dc.subject.otherEngineering, built environment and information technology articles SDG-07
dc.subject.otherSDG-07: Affordable and clean energy
dc.subject.otherEngineering, built environment and information technology articles SDG-09
dc.subject.otherSDG-09: Industry, innovation and infrastructure
dc.subject.otherEngineering, built environment and information technology articles SDG-12
dc.subject.otherSDG-12: Responsible consumption and production
dc.subject.otherEngineering, built environment and information technology articles SDG-13
dc.subject.otherSDG-13: Climate action
dc.titleExperimental exploration of hybrid nanofluids as energy-efficient fluids in solar and thermal energy storage applicationsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Yasmin_Experimental_2024.pdf
Size:
5.42 MB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: