Cost-effective global surrogate modeling of planar microwave filters using multi-fidelity Bayesian support vector regression

dc.contributor.authorJacobs, Jan Pieter
dc.contributor.authorKoziel, S.
dc.contributor.emailjpjacobs@postino.up.ac.zaen_ZA
dc.date.accessioned2015-11-23T06:41:13Z
dc.date.available2015-11-23T06:41:13Z
dc.date.issued2014-01
dc.description.abstractA computationally efficient method is presented for setting up accurate Bayesian support vector regression (BSVR) models of the highly nonlinear |S21| responses of planar microstrip filters using substantially reduced finely discretized training data (compared to traditional design of experiments techniques). Inexpensive coarse-discretization full-wave simulations are exploited in conjunction with the sparseness property of BSVR to identify the regions of the input space requiring denser sampling. The proposed technique allows for substantial reduction (by up to 51%) of the computational expense necessary to collect the finely discretized training data, with negligible loss in predictive accuracy. The accuracy of the reduced-data BSVR models is confirmed by their use within a space mapping optimization algorithmen_ZA
dc.description.librarianhb2015en_ZA
dc.description.sponsorshipIcelandic Centre for Research (RANNIS) Grants 110034021 and 120016021.en_ZA
dc.description.urihttp://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-047Xen_ZA
dc.identifier.citationJacobs, JP & Koziel, S 2014, 'Cost-effective global surrogate modeling of planar microwave filters using multi-fidelity Bayesian support vector regression', International Journal of RF and Microwave Computer-Aided Engineering, vol. 24, no. 1, pp. 11-17.en_ZA
dc.identifier.issn1096-4290 (print)
dc.identifier.issn1099-047X (online)
dc.identifier.other10.1002/mmce.20707
dc.identifier.urihttp://hdl.handle.net/2263/50577
dc.language.isoenen_ZA
dc.publisherWileyen_ZA
dc.rights© 2013 Wiley Periodicals, Inc. This is the pre-peer reviewed version of the following article : Cost-effective global surrogate modeling of planar microwave filters using multi-fidelity bayesian support vector regression, International Journal of RF and Microwave Computer-Aided Engineering, vol. 24, no. 1, pp. 11-17, 2014. doi : 10.1002/mmce.20707. The definite version is available at : http://onlinelibrary.wiley.comjournal/10.1002/(ISSN)1099-047X.en_ZA
dc.subjectGaussian processesen_ZA
dc.subjectMicrowave filtersen_ZA
dc.subjectModelingen_ZA
dc.subjectSupport vector machinesen_ZA
dc.subjectBayesian support vector regression (BSVR)en_ZA
dc.titleCost-effective global surrogate modeling of planar microwave filters using multi-fidelity Bayesian support vector regressionen_ZA
dc.typePostprint Articleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Jacobs_CostEffective_2014.pdf
Size:
433.55 KB
Format:
Adobe Portable Document Format
Description:
Postprint Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: