Improving short text classification through global augmentation methods

dc.contributor.authorMarivate, Vukosi
dc.contributor.authorSefara, Tshephisho
dc.contributor.emailvukosi.marivate@cs.up.ac.zaen_ZA
dc.date.accessioned2020-10-28T05:18:12Z
dc.date.available2020-10-28T05:18:12Z
dc.date.issued2020-08
dc.description.abstractWe study the effect of different approaches to text augmentation. To do this we use three datasets that include social media and formal text in the form of news articles. Our goal is to provide insights for practitioners and researchers on making choices for augmentation for classification use cases. We observe that Word2Vec-based augmentation is a viable option when one does not have access to a formal synonym model (like WordNet-based augmentation). The use of mixup further improves performance of all text based augmentations and reduces the effects of overfitting on a tested deep learning model. Round-trip translation with a translation service proves to be harder to use due to cost and as such is less accessible for both normal and low resource use-cases.en_ZA
dc.description.departmentComputer Scienceen_ZA
dc.description.librarianhj2020en_ZA
dc.description.urihttp://link.springer.combookseries/558en_ZA
dc.identifier.citationMarivate V., Sefara T. (2020) Improving Short Text Classification Through Global Augmentation Methods. In: Holzinger A., Kieseberg P., Tjoa A., Weippl E. (eds) Machine Learning and Knowledge Extraction. CD-MAKE 2020. Lecture Notes in Computer Science, vol 12279. Springer, Cham. https://doi.org/10.1007/978-3-030-57321-8_21.en_ZA
dc.identifier.issn0302-9743 (print)
dc.identifier.issn1611-3349 (online)
dc.identifier.other10.1007/978-3-030-57321-8_21
dc.identifier.urihttp://hdl.handle.net/2263/76628
dc.language.isoenen_ZA
dc.publisherSpringeren_ZA
dc.rights© IFIP International Federation for Information Processing 2019. The original publication is available at : http://link.springer.combookseries/558.en_ZA
dc.subjectNatural language processing (NLP)en_ZA
dc.subjectData augmentationen_ZA
dc.subjectText classificationen_ZA
dc.subjectDeep neural network (DNN)en_ZA
dc.titleImproving short text classification through global augmentation methodsen_ZA
dc.typePostprint Articleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Marivate_Improving_2020.pdf
Size:
532.54 KB
Format:
Adobe Portable Document Format
Description:
Postprint Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: