Perpendicular lines : four proofs of the negative reciprocal relationship

dc.contributor.authorWiggins, Harry
dc.contributor.emailharry.wiggins@up.ac.zaen_ZA
dc.date.accessioned2019-10-15T08:59:07Z
dc.date.available2019-10-15T08:59:07Z
dc.date.issued2018
dc.description.abstractOne of the great joys of mathematics is finding multiple ways of arriving at a solution or proving a result. Some approaches can be messy and longwinded, while others can be elegant and succinct. But the joy lies in arriving at a common endpoint, however circuitous the route may have been. In this article we explore four different ways of proving the negative reciprocal relationship between the gradients of perpendicular lines. Each proof uses elementary ideas from other topics encountered in the high school Mathematics curriculum.en_ZA
dc.description.departmentMathematics and Applied Mathematicsen_ZA
dc.description.urihttp://www.amesa.org.za/LTM.htmen_ZA
dc.identifier.citationWiggins, H. 2018, 'Perpendicular lines : four proofs of the negative reciprocal relationship', Learning and Teaching Mathematics, vol. 25. pp. 28-31.en_ZA
dc.identifier.issn1990-6811
dc.identifier.urihttp://hdl.handle.net/2263/71830
dc.language.isoenen_ZA
dc.publisherAssociation for Mathematics Education of South Africaen_ZA
dc.rightsAssociation for Mathematics Education of South Africa (AMESA)en_ZA
dc.subjectMathematicsen_ZA
dc.subjectReciprocal relationshipen_ZA
dc.subjectPerpendicular linesen_ZA
dc.titlePerpendicular lines : four proofs of the negative reciprocal relationshipen_ZA
dc.typeArticleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Wiggins_Perpendicular_2018.pdf
Size:
370.14 KB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: