A new faster iteration process applied to constrained minimization and feasibility problems

dc.contributor.authorAbbas, Mujahid
dc.contributor.authorNazir, Talat
dc.date.accessioned2015-02-17T05:23:14Z
dc.date.available2015-02-17T05:23:14Z
dc.date.issued2014-06
dc.description.abstractWe introduce a new iteration process and prove that it is faster than all of Picard, Mann and Agarwal et al. processes. We support analytic proof by a numerical example. Our process is independent of all three processes just mentioned. We also prove some weak and strong convergence theorems for two nonexpansive mappings. Moreover, we apply our results to find solutions of constrained minimization problems and feasibility problems.en_ZA
dc.description.librarianhb2015en_ZA
dc.description.urihttp://www.emis.dejournals/MV/en_ZA
dc.identifier.citationAbbas, M & Nazir, T 2014, 'A new faster iteration process applied to constrained minimization and feasibility problems', Matematicki Vesnik , vol. 66, no. 2, pp. 223-234.en_ZA
dc.identifier.issn0025-5165 (online)
dc.identifier.urihttp://hdl.handle.net/2263/43663
dc.language.isoenen_ZA
dc.publisherMathematical Society of Serbiaen_ZA
dc.rights© 2014 Mathematical Society of Serbia. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.orglicenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.en_ZA
dc.subjectNonexpansive mappingen_ZA
dc.subjectWeak convergenceen_ZA
dc.subjectStrong convergenceen_ZA
dc.subjectRate of convergenceen_ZA
dc.subjectIteration processen_ZA
dc.titleA new faster iteration process applied to constrained minimization and feasibility problemsen_ZA
dc.typeArticleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Abbas_New_2014.pdf
Size:
188.95 KB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: