Forecasting US GNP growth : the role of uncertainty

dc.contributor.authorSegnon, Mawuli
dc.contributor.authorGupta, Rangan
dc.contributor.authorBekiros, Stelios
dc.contributor.authorWohar, Mark E.
dc.date.accessioned2018-04-24T13:20:49Z
dc.date.issued2018-08
dc.description.abstractA large number of models have been developed in the literature to analyze and forecast changes in output dynamics. The objective of this paper was to compare the predictive ability of univariate and bivariate models, in terms of forecasting US gross national product (GNP) growth at different forecasting horizons, with the bivariate models containing information on a measure of economic uncertainty. Based on point and density forecast accuracy measures, as well as on equal predictive ability (EPA) and superior predictive ability (SPA) tests, we evaluate the relative forecasting performance of different model specifications over the quarterly period of 1919:Q2 until 2014:Q4. We find that the economic policy uncertainty (EPU) index should improve the accuracy of US GNP growth forecasts in bivariate models. We also find that the EPU exhibits similar forecasting ability to the term spread and outperforms other uncertainty measures such as the volatility index and geopolitical risk in predicting US recessions. While the Markov switching time‐varying parameter vector autoregressive model yields the lowest values for the root mean squared error in most cases, we observe relatively low values for the log predictive density score, when using the Bayesian vector regression model with stochastic volatility. More importantly, our results highlight the importance of uncertainty in forecasting US GNP growth rates.en_ZA
dc.description.departmentEconomicsen_ZA
dc.description.embargo2019-08-01
dc.description.librarianhj2018en_ZA
dc.description.urihttp://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-131Xen_ZA
dc.identifier.citationSegnon, M., Gupta, R., Bekiros, S. & Wohar, M.E. 2018, 'Forecasting US GNP growth : the role of uncertainty', Journal of Forecasting, vol. 37, no. 5, pp. 541-559.en_ZA
dc.identifier.issn0277-6693 (print)
dc.identifier.issn1099-131X (online)
dc.identifier.other10.1002/for.2517
dc.identifier.urihttp://hdl.handle.net/2263/64712
dc.language.isoenen_ZA
dc.publisherWileyen_ZA
dc.rights© 2018 John Wiley and Sons, Ltd. This is the pre-peer reviewed version of the following article : 'Forecasting US GNP growth : the role of uncertainty', Journal of Forecasting, vol. 37, no. 5, pp. 541-559 2018, doi : 10.1002/for.2517. The definite version is available at : http://onlinelibrary.wiley.comjournal/10.1002/(ISSN)1099-131X.en_ZA
dc.subjectGross national product (GNP)en_ZA
dc.subjectEqual predictive ability (EPA)en_ZA
dc.subjectSuperior predictive ability (SPA)en_ZA
dc.subjectEconomic policy uncertainty (EPU)en_ZA
dc.subjectForecast comparisonen_ZA
dc.subjectUS GNPen_ZA
dc.subjectUnited States (US)en_ZA
dc.subjectVector autoregressive modelsen_ZA
dc.subjectStochastic modelsen_ZA
dc.subjectStochastic volatilityen_ZA
dc.subjectRoot mean squared errorsen_ZA
dc.subjectModel specificationsen_ZA
dc.subjectForecasting performanceen_ZA
dc.subjectForecast comparisonen_ZA
dc.subjectEconomic policiesen_ZA
dc.subjectStochastic systemsen_ZA
dc.subjectRisk assessmenten_ZA
dc.subjectRegression analysisen_ZA
dc.subjectPlanningen_ZA
dc.subjectMean square erroren_ZA
dc.subjectForecastingen_ZA
dc.subjectEconomicsen_ZA
dc.titleForecasting US GNP growth : the role of uncertaintyen_ZA
dc.typePostprint Articleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Segnon_Forecasting_2018.pdf
Size:
979.14 KB
Format:
Adobe Portable Document Format
Description:
Postprint Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: