Optimization and learning in energy efficient resource allocation for cognitive radio networks

dc.contributor.authorHlophe, Mduduzi Comfort
dc.contributor.authorMaharaj, Bodhaswar Tikanath Jugpershad
dc.contributor.emailsunil.maharaj@up.ac.zaen_ZA
dc.date.accessioned2020-02-06T05:16:44Z
dc.date.available2020-02-06T05:16:44Z
dc.date.issued2019-04
dc.descriptionPaper presented at the 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), 28 April-1 May 2019, Kuala Lumpur, Malaysia.en_ZA
dc.description.abstractThe recent surge in real-time traffic has led to serious energy efficiency concerns in cognitive radio networks (CRNs). Network infrastructure such as base stations (BSs) host different service classes of traffic with stringent quality-of-service (QoS) requirements that need to be satisfied. Thus, maintaining the desired QoS in an energy efficient manner requires a good trade-off between QoS and energy saving. To deal with this problem, this paper proposes a deep learning-based computational-resource-aware energy consumption technique. The proposed scheme uses an exploration technique of the systems' state-space and traffic load prediction to come up with a better trade-off between QoS and energy saving. The simulation results show that the proposed exploration technique performs 9% better than the traditional random tree technique even when the provisioning priority shifts away from energy saving towards QoS, i.e., α ≥ 0.5.en_ZA
dc.description.departmentElectrical, Electronic and Computer Engineeringen_ZA
dc.description.librarianhj2020en_ZA
dc.description.urihttps://ieeexplore.ieee.org/xpl/conhome/8738891/proceedingen_ZA
dc.identifier.citationHlophe, M.C. & Maharaj, B.T. 2019, 'Optimization and learning in energy efficient resource allocation for cognitive radio networks', 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring)en_ZA
dc.identifier.issn0098-3551
dc.identifier.other10.1109/VTCSpring.2019.8746632
dc.identifier.urihttp://hdl.handle.net/2263/73123
dc.language.isoenen_ZA
dc.publisherInstitute of Electrical and Electronics Engineersen_ZA
dc.rights© 2019 IEEEen_ZA
dc.subjectQuality of service (QoS)en_ZA
dc.subjectPower demanden_ZA
dc.subjectServersen_ZA
dc.subjectCost functionen_ZA
dc.subjectEnergy consumption (EC)en_ZA
dc.subjectResource managementen_ZA
dc.subjectTrees (mathematics)en_ZA
dc.subjectTelecommunication trafficen_ZA
dc.subjectTelecommunication power managementen_ZA
dc.subjectTelecommunication computingen_ZA
dc.subjectResource allocationen_ZA
dc.subjectCognitive radio (CR)en_ZA
dc.subjectLearning (artificial intelligence)en_ZA
dc.subjectNeural netsen_ZA
dc.subjectOptimisationen_ZA
dc.subjectEnergy efficient resource allocationen_ZA
dc.subjectRandom tree techniqueen_ZA
dc.subjectReal-time trafficen_ZA
dc.subjectDeep learning-based computational-resource-aware energy consumption techniqueen_ZA
dc.subjectCognitive radio network (CRN)en_ZA
dc.titleOptimization and learning in energy efficient resource allocation for cognitive radio networksen_ZA
dc.typePostprint Articleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Hlophe_Optimization_2019.pdf
Size:
1.02 MB
Format:
Adobe Portable Document Format
Description:
Postprint Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: