A hybrid ARFIMA wavelet artificial neural network model for DJIA index forecasting

dc.contributor.authorBoubaker, Heni
dc.contributor.authorCanarella, Giorgio
dc.contributor.authorGupta, Rangan
dc.contributor.authorMiller, Stephen M.
dc.date.accessioned2023-03-16T10:46:42Z
dc.date.issued2023-12
dc.description.abstractThis paper proposes a hybrid modelling approach for forecasting returns and volatilities of the stock market. The model, called ARFIMA-WLLWNN model, integrates the advantages of the ARFIMA model, the wavelet decomposition technique (namely, the discrete MODWT with Daubechies least asymmetric wavelet filter) and artificial neural network (namely, the LLWNN neural network). The model develops through a two-phase approach. In phase one, a wavelet decomposition improves the forecasting accuracy of the LLWNN neural network, resulting in the Wavelet Local Linear Wavelet Neural Network (WLLWNN) model. The Back Propagation and Particle Swarm Optimization (PSO) learning algorithms optimize the WLLWNN structure. In phase two, the residuals of an ARFIMA model of the conditional mean become the input to the WLLWNN model. The hybrid ARFIMA-WLLWNN model is evaluated using daily returns of the Dow Jones Industrial Average index over 01/05/2010 to 02/11/2020. The experimental results indicate that the PSO-optimized version of the hybrid ARFIMA-WLLWNN outperforms the LLWNN, WLLWNN, ARFIMA-LLWNN, and the ARFIMA-HYAPARCH models and provides more accurate out-of-sample forecasts over validation horizons of one, five and twenty-two days.en_US
dc.description.departmentEconomicsen_US
dc.description.embargo2023-09-27
dc.description.librarianhj2023en_US
dc.description.urihttps://link.springer.com/journal/10614en_US
dc.identifier.citationBoubaker, H., Canarella, G., Gupta, R. et al. A Hybrid ARFIMA Wavelet Artificial Neural Network Model for DJIA Index Forecasting. Computational Economics (2023). 62, 1801–1843 (2023). https://doi.org/10.1007/s10614-022-10320-z.en_US
dc.identifier.issn0927-7099 (print)
dc.identifier.issn1572-9974 (online)
dc.identifier.other10.1007/s10614-022-10320-z
dc.identifier.urihttp://hdl.handle.net/2263/90135
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rights© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. The original publication is available at : http://link.springer.comjournal/10614.en_US
dc.subjectARFIMA-WLLWNN modelen_US
dc.subjectArtificial neural network (ANN)en_US
dc.subjectWavelet local linear wavelet neural network (WLLWNN)en_US
dc.subjectWavelet decompositionen_US
dc.subjectNeural networken_US
dc.subjectHyperbolic GARCH (HYGARCH)en_US
dc.titleA hybrid ARFIMA wavelet artificial neural network model for DJIA index forecastingen_US
dc.typePostprint Articleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Boubaker_Hybrid_2023.pdf
Size:
1.13 MB
Format:
Adobe Portable Document Format
Description:
Postprint Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: