Correlations for total entropy generation and Bejan number for free convective heat transfer of an eco-friendly nanofluid in a rectangular enclosure under uniform magnetic field

Loading...
Thumbnail Image

Authors

Khetib, Yacine
Abo-Dief, Hala M.
Alanazi, Abdullah K.
Cheraghian, Goshtasp
Sajadi, S. Mohammad
Sharifpur, Mohsen

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI

Abstract

In this paper, focusing on the study of entropy generation (EGN), the convection flow of an eco-friendly nanofluid (N-F) in a rectangular enclosure is studied numerically. The nanoparticles (N-Ps) used are silver N-P, which are obtained in an eco-friendly manner from natural materials. By suspending these N-Ps in an equal mixture of water and ethylene glycol (E-G), the N-F has been prepared. There are two constant-temperature triangular obstacles with height w and base H that are placed on the hot wall. There is a magnetic field (M-F) in the x-direction. To simulate the N-F flow, eco-friendly N-P relations are used, and the equations are solved using the volume control method and the SIMPLE algorithm. The variables include Rayleigh number (Ra), Hartmann number (Ha), H, W, and the volume fraction of silver N-Ps. The effect of these parameters is evaluated on the EGN and Bejan number (Be). Finally, a correlation is expressed for the EGN for a range of variables. The most important results of this paper demonstrate that the addition of silver eco-friendly N-Ps intensifies the EGN so that the addition of 3% of N-Ps enhances the EGN by 3.8%. An increment in the obstacle length reduces the Be barrier while increasing the Ha, which enhances the Be when the convection is strong. Increasing the height of the obstacle intensifies entropy generation.

Description

Keywords

Triangular blades, Natural convection, Magnetic field, Eco-friendly nanofluid, Entropy generation

Sustainable Development Goals

SDG-03: Good health and well-being
SDG-04: Quality education
SDG-07: Affordable and clean energy
SDG-09: Industry, innovation and infrastructure
SDG-12: Responsible consumption and production
SDG-13: Climate action

Citation

Khetib, Y.; Abo-Dief, H.M.; Alanazi, A.K.; Cheraghian, G.; Sajadi, S.M.; Sharifpur, M. Correlations for Total Entropy Generation and Bejan Number for Free Convective Heat Transfer of an Eco-Friendly Nanofluid in a Rectangular Enclosure under Uniform Magnetic Field. Processes 2021, 9, 1930. https://DOI.org/10.3390/pr9111930.