Modelling representative population mobility for COVID-19 spatial transmission in South Africa

dc.contributor.authorPotgieter, A.
dc.contributor.authorFabris-Rotelli, Inger Nicolette
dc.contributor.authorKimmie, Z.
dc.contributor.authorDudeni-Tlhone, N.
dc.contributor.authorHolloway, J.P.
dc.contributor.authorJanse van Rensburg, C.
dc.contributor.authorThiede, Renate Nicole
dc.contributor.authorDebba, P.
dc.contributor.authorManjoo-Docrat, R.
dc.contributor.authorAbdelatif, Nada A.
dc.contributor.authorKhuluse-Makhanya, S.
dc.contributor.emailinger.fabris-rotelli@up.ac.zaen_ZA
dc.date.accessioned2022-02-25T09:03:32Z
dc.date.available2022-02-25T09:03:32Z
dc.date.issued2021-10-22
dc.description.abstractThe COVID-19 pandemic starting in the first half of 2020 has changed the lives of everyone across the world. Reduced mobility was essential due to it being the largest impact possible against the spread of the little understood SARS-CoV-2 virus. To understand the spread, a comprehension of human mobility patterns is needed. The use of mobility data in modelling is thus essential to capture the intrinsic spread through the population. It is necessary to determine to what extent mobility data sources convey the same message of mobility within a region. This paper compares different mobility data sources by constructing spatial weight matrices at a variety of spatial resolutions and further compares the results through hierarchical clustering. We consider four methods for constructing spatial weight matrices representing mobility between spatial units, taking into account distance between spatial units as well as spatial covariates. This provides insight for the user into which data provides what type of information and in what situations a particular data source is most useful.en_ZA
dc.description.departmentStatisticsen_ZA
dc.description.librarianam2022en_ZA
dc.description.sponsorshipThe National Research Foundation (NRF) and Canada’s International Development Research Centre (IDRC).en_ZA
dc.description.urihttps://www.frontiersin.org/journals/big-dataen_ZA
dc.identifier.citationPotgieter, A., Fabris-Rotelli, I.N., Kimmie, Z., Dudeni-Tlhone, N., Holloway, J.P., Janse van Rensburg, C., Thiede, R.N., Debba, P., Manjoo-Docrat, R., Abdelatif, N. & Khuluse-Makhanya, S. (2021) Modelling Representative Population Mobility for COVID-19 Spatial Transmission in South Africa. Frontiers in Big Data 4:718351. DOI: 10.3389/fdata.2021.718351en_ZA
dc.identifier.issn2624-909X (online)
dc.identifier.other10.3389/fdata.2021.718351
dc.identifier.urihttp://hdl.handle.net/2263/84218
dc.language.isoenen_ZA
dc.publisherFrontiers Mediaen_ZA
dc.rights© 2021 Potgieter, Fabris-Rotelli, Kimmie, Dudeni-Tlhone, Holloway, Janse van Rensburg, Thiede, Debba, Manjoo-Docrat, Abdelatif and Khuluse- Makhanya. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY).en_ZA
dc.subjectMobilityen_ZA
dc.subjectSpatial weight matricesen_ZA
dc.subjectHierarchical clusteringen_ZA
dc.subjectCOVID-19 pandemicen_ZA
dc.subjectCoronavirus disease 2019 (COVID-19)en_ZA
dc.subjectSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2)en_ZA
dc.subjectSpatial transmissionen_ZA
dc.subjectPrincipal component analysis (PCA)en_ZA
dc.titleModelling representative population mobility for COVID-19 spatial transmission in South Africaen_ZA
dc.typeArticleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Potgieter_Modelling_2021.pdf
Size:
4.32 MB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: