Three-dimensional conductive heat transfer topology optimisation in a cubic domain for the volume-to-surface problem
Loading...
Date
Authors
Burger, F.H. (Francois Hector)
Dirker, Jaco
Meyer, Josua P.
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Abstract
In this paper, three-dimensional topology optimisation was investigated with regard to heat conduction
for the volume-to-point or volume-to-surface problem in a cubic three-dimensional domain. The positioning
of high conductive material in a solid with low thermal conductivity and high heat generation
was optimised via the method of moving asymptotes (MMA) algorithm in order to reduce the average
internal temperature. Both partial and full Dirichlet temperature boundaries were considered. Thermal
conductivity ratios ranging from 5 to 3000 and volumetric constraint between 5% and 30% were covered.
The high conductive material distributions were found to resemble those of natural tree-structures, with
the four primary branches extending towards the furthest corners of the domain when a single seed-location
was used. Multiple seed locations (two and four) were also considered. It was found that each seed
location resulted in a separate conduction tree, each of which also had four primary branches. By increasing
the number of seed locations from one to four, the thermal performance of the optimised internal
architecture improved by up to 20% for a volumetric constraint of 5%.
Description
Keywords
Topology optimisation, Conduction, Three-dimensional
Sustainable Development Goals
Citation
Burger, FH, Dirker, J & Meyer, JP 2013, 'Three-dimensional conductive heat transfer topology optimisation in a cubic domain for the volume-to-surface problem', International Journal of Heat and Mass Transfer, vol. 67, no.12. pp. 214-224.
