Modelling the effect of bednet coverage on malaria transmission in South Sudan

dc.contributor.authorMukhtar, Abdulaziz Y. A.
dc.contributor.authorMunyakazi, Justin B.
dc.contributor.authorOuifki, Rachid
dc.contributor.authorClark, Allan E.
dc.date.accessioned2019-02-08T07:56:22Z
dc.date.available2019-02-08T07:56:22Z
dc.date.issued2018-06-08
dc.descriptionS1 Appendix. Proof of the proportion 4.1.en_ZA
dc.descriptionS1 Dataset. Weekly malaria cases data.en_ZA
dc.description.abstractA campaign for malaria control, using Long Lasting Insecticide Nets (LLINs) was launched in South Sudan in 2009. The success of such a campaign often depends upon adequate available resources and reliable surveillance data which help officials understand existing infections. An optimal allocation of resources for malaria control at a sub-national scale is therefore paramount to the success of efforts to reduce malaria prevalence. In this paper, we extend an existing SIR mathematical model to capture the effect of LLINs on malaria transmission. Available data on malaria is utilized to determine realistic parameter values of this model using a Bayesian approach via Markov Chain Monte Carlo (MCMC) methods. Then, we explore the parasite prevalence on a continued rollout of LLINs in three different settings in order to create a sub-national projection of malaria. Further, we calculate the model's basic reproductive number and study its sensitivity to LLINs' coverage and its efficacy. From the numerical simulation results, we notice a basic reproduction number, R0, confirming a substantial increase of incidence cases if no form of intervention takes place in the community. This work indicates that an effective use of LLINs may reduce R0 and hence malaria transmission. We hope that this study will provide a basis for recommending a scaling-up of the entry point of LLINs' distribution that targets households in areas at risk of malaria.en_ZA
dc.description.departmentMathematics and Applied Mathematicsen_ZA
dc.description.librarianam2019en_ZA
dc.description.sponsorshipThe DST-NRF Centre of Excellence in Mathematical and Statistical Sciences (CoE-MaSS) and DST-NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA).en_ZA
dc.description.urihttp://www.plosone.orgen_ZA
dc.identifier.citationMukhtar, A.Y.A., Munyakazi, J.B., Ouifki, R., Clark, A.E. (2018) Modelling the effect of bednet coverage on malaria transmission in South Sudan. PLoS ONE 13(6): e0198280. https://DOI.org/10.1371/journal.pone.0198280.en_ZA
dc.identifier.issn10.1371/journal.pone.0198280
dc.identifier.other10.1371/journal.pone.0198280
dc.identifier.urihttp://hdl.handle.net/2263/68435
dc.language.isoenen_ZA
dc.publisherPublic Library of Scienceen_ZA
dc.rights© 2018 Mukhtar et al. This is an open access article distributed under the terms of the Creative Commons Attribution License.en_ZA
dc.subjectMalariaen_ZA
dc.subjectTransmissionen_ZA
dc.subjectSouth Sudanen_ZA
dc.subjectBednetsen_ZA
dc.subjectLong lasting insecticide nets (LLIN)en_ZA
dc.subjectMarkov chain Monte Carlo (MCMC)en_ZA
dc.titleModelling the effect of bednet coverage on malaria transmission in South Sudanen_ZA
dc.typeArticleen_ZA

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
Mukhtar_Modelling_2018.pdf
Size:
3.65 MB
Format:
Adobe Portable Document Format
Description:
Article
Loading...
Thumbnail Image
Name:
Mukhtar_ModellingAppS1_2018.pdf
Size:
40.68 KB
Format:
Adobe Portable Document Format
Description:
Appendix S1
Loading...
Thumbnail Image
Name:
Mukhtar_ModellingDatasetS1_2018.csv
Size:
4.93 KB
Format:
Unknown data format
Description:
Dataset S1

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: