Bursts of rapid diversification, dispersals out of Southern Africa, and two origins of dioecy punctuate the evolution of asparagus

Loading...
Thumbnail Image

Authors

Bentz, Philip C.
Burrows, John E.
Burrows, Sandra M.
Mizrachi, Eshchar
Liu, Zhengjie
Yang, Junbo
Mao, Zichao
Popecki, Margot
Seberg, Ole
Petersen, Gitte

Journal Title

Journal ISSN

Volume Title

Publisher

Oxford University Press

Abstract

The genus Asparagus arose ∼9 to 15 million years ago (Ma), and transitions from hermaphroditism to dioecy (separate sexes) occurred ∼3 to 4 Ma. Roughly 27% of extant Asparagus species are dioecious, while the remaining are bisexual with monoclinous flowers. As such, Asparagus is an ideal model taxon for studying the early stages of dioecy and sex chromosome evolution in plants. Until now, however, understanding of diversification and shifts from hermaphroditism to dioecy in Asparagus has been hampered by the lack of robust species tree estimates for the genus. In this study, a genus-wide phylogenomic analysis including 1,726 nuclear loci and comprehensive species sampling supports two independent origins of dioecy in Asparagus—first in a widely distributed Eurasian clade and then in a clade restricted to the Mediterranean Basin. Modeling of ancestral biogeography indicates that both dioecy origins were associated with range expansion out of southern Africa. Our findings also reveal several bursts of diversification across the phylogeny, including an initial radiation in southern Africa that gave rise to 12 major clades in the genus, and more recent radiations that have resulted in paraphyly and polyphyly among closely related species, as expected given active speciation processes. Lastly, we report that the geographic origin of domesticated garden asparagus (Asparagus officinalis L.) was likely in western Asia near the Mediterranean Sea. The presented phylogenomic framework for Asparagus is foundational for ongoing genomic investigations of diversification and functional trait evolution in the genus and contributes to its utility for understanding the origin and early evolution of dioecy and sex chromosomes.

Description

DATA AVAILABITY STATEMENT: All relevant result files and original scripts from this study are available at https://zenodo.org/doi/10.5281/zenodo. 10804898. Sequencing reads from this study were deposited in the NCBI Sequence Read Archive under the BioProject numbers PRJNA1088837 and PRJNA1088858.

Keywords

Asparagaceae, Biogeography, Budding species, Dioecious, Phylogenomics, SDG-02: Zero hunger, SDG-15: Life on land

Sustainable Development Goals

SDG-02:Zero Hunger
SDG-15:Life on land

Citation

Philip C Bentz, John E Burrows, Sandra M Burrows, Eshchar Mizrachi, Zhengjie Liu, Junbo Yang, Zichao Mao, Margot Popecki, Ole Seberg, Gitte Petersen, Jim Leebens-Mack, Bursts of Rapid Diversification, Dispersals Out of Southern Africa, and Two Origins of Dioecy Punctuate the Evolution of Asparagus, Genome Biology and Evolution, Volume 16, Issue 10, October 2024, evae200, https://doi.org/10.1093/gbe/evae200.