Structural theory of trees. II. Completeness and completions of trees
| dc.contributor.author | Kellerman, Ruaan | |
| dc.contributor.author | Zanardo, Alberto | |
| dc.contributor.author | Goranko, Valentin | |
| dc.contributor.email | ruaan.kellerman@up.ac.za | en_US |
| dc.date.accessioned | 2024-07-25T08:55:53Z | |
| dc.date.available | 2024-07-25T08:55:53Z | |
| dc.date.issued | 2023-12 | |
| dc.description.abstract | Trees are partial orderings where every element has a linearly ordered set of smaller elements. We define and study several natural notions of completeness of trees, extending Dedekind completeness of linear orders and Dedekind-MacNeille completions of partial orders. We then define constructions of tree completions that extend any tree to a minimal one satisfying the respective completeness property. | en_US |
| dc.description.department | Mathematics and Applied Mathematics | en_US |
| dc.description.librarian | am2024 | en_US |
| dc.description.sdg | None | en_US |
| dc.description.uri | https://cdm.ucalgary.ca | en_US |
| dc.identifier.citation | Kellerman, R., Zanardo, A., goranko, V. 2023, 'Structural theory of trees. II. Completeness and completions of trees', Contributions to Discrete Mathematics, vol. 18, no. 2, pp. 210-233. | en_US |
| dc.identifier.issn | 1715-0868 | |
| dc.identifier.uri | http://hdl.handle.net/2263/97233 | |
| dc.language.iso | en | en_US |
| dc.publisher | University of Calgary Press | en_US |
| dc.rights | © University of Calgary Press. | en_US |
| dc.subject | Partial order | en_US |
| dc.subject | Tree | en_US |
| dc.subject | Complete | en_US |
| dc.subject | Completion | en_US |
| dc.title | Structural theory of trees. II. Completeness and completions of trees | en_US |
| dc.type | Article | en_US |
