Comparing the forecasting ability of financial conditions indices : the case of South Africa

dc.contributor.authorBalcilar, Mehmet
dc.contributor.authorGupta, Rangan
dc.contributor.authorVan Eyden, Renee
dc.contributor.authorThompson, Kirsten L.
dc.contributor.authorMajumdar, Anandamayee
dc.contributor.emailrenee.vaneyden@up.ac.zaen_ZA
dc.date.accessioned2018-04-24T12:54:14Z
dc.date.issued2018-08
dc.description.abstractIn this paper we test the forecasting ability of three estimated financial conditions indices (FCIs) with respect to key macroeconomic variables of output growth, inflation and interest rates. We do this by forecasting the aforementioned macroeconomic variables based on the information contained in the three alternative FCIs using a Bayesian VAR (BVAR), nonlinear logistic vector smooth transition autoregression (VSTAR) and nonparametric (NP) and semi-parametric (SP) regressions, and compare the results with the standard benchmarks of random-walk, univariate autoregressive and classical VAR models. The three FCIs are constructed using rolling-window principal component analysis (PCA), dynamic model averaging (DMA) in the context of a time-varying parameter factor-augmented vector autoregressive (TVP-FAVAR) model, and a time-varying parameter vector autoregressive (TVP-VAR) model with constant factor loadings. Our results suggest that the VSTAR model performs best in the case of forecasting output and inflation, while a SP specification proves to be the best for forecasting the interest rate. More importantly, statistical testing for significant differences in forecast errors across models corroborates the finding of superior predictive ability of the nonlinear models.en_ZA
dc.description.departmentEconomicsen_ZA
dc.description.embargo2020-08-26
dc.description.librarianhj2018en_ZA
dc.description.urihttp://www.elsevier.com/locate/qreen_ZA
dc.identifier.citationBalcilar, M., Gupta, R., Van Eyden, R. et al. 2018, 'Comparing the forecasting ability of financial conditions indices: the case of South Africa', Quarterly Review of Economics and Finance, vol. 69, pp. 245-259.en_ZA
dc.identifier.issn1062-9769
dc.identifier.other10.1016/j.qref.2018.03.012
dc.identifier.urihttp://hdl.handle.net/2263/64711
dc.language.isoenen_ZA
dc.publisherElsevieren_ZA
dc.rights© 2018 Board of Trustees of the University of Illinois. Published by Elsevier Inc. All rights reserved. Notice : this is the author’s version of a work that was accepted for publication in Quarterly Review of Economics and Finance. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. A definitive version was subsequently published inQuarterly Review of Economics and Finance, vol. 69, pp. 245-259, 2018. doi : 10.1016/j.qref.2018.03.012.en_ZA
dc.subjectFinancial conditions indices (FCIs)en_ZA
dc.subjectBayesian VAR (BVAR)en_ZA
dc.subjectVector smooth transition autoregression (VSTAR)en_ZA
dc.subjectNonparametric (NP) regressionen_ZA
dc.subjectSemi-parametric (SP) regressionen_ZA
dc.subjectPrincipal component analysis (PCA)en_ZA
dc.subjectDynamic model averaging (DMA)en_ZA
dc.subjectNonlinear logistic smooth transition vector autoregressive modelen_ZA
dc.titleComparing the forecasting ability of financial conditions indices : the case of South Africaen_ZA
dc.typePostprint Articleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Balcilar_Comparing_2018.pdf
Size:
1.14 MB
Format:
Adobe Portable Document Format
Description:
Postprint Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: