On the strong solution for the 3D Stochastic Leray-Alpha Model

dc.contributor.authorDeugoue, Gabriel
dc.contributor.authorSango, Mamadou
dc.contributor.emailmamadou.sango@up.ac.zaen_US
dc.date.accessioned2011-01-07T11:27:46Z
dc.date.available2011-01-07T11:27:46Z
dc.date.issued2010
dc.description.abstractWe prove the existence and uniqueness of strong solution to the stochastic Leray-α equations under appropriate conditions on the data. This is achieved by means of the Galerkin approximation scheme. We also study the asymptotic behaviour of the strong solution as alpha goes to zero. We show that a sequence of strong solutions converges in appropriate topologies to weak solutions of the 3D stochastic Navier-Stokes equations.en
dc.description.sponsorshipThis research is supported by the University of Pretoria and a focus area grant from the National Research Foundation of South Africa.en_US
dc.identifier.citationDeugoue, G & Sango, M 2010, 'On the Strong Solution for the 3D Stochastic Leray-Alpha Model', Boundary Value Problems, ID. 723018, pp. 1-31. [http://www.hindawi.com/journals/bvp/]en
dc.identifier.issn1687-2762
dc.identifier.other10.1155/2010/723018
dc.identifier.urihttp://hdl.handle.net/2263/15487
dc.language.isoenen_US
dc.publisherHindawi Publishing Corporationen_US
dc.rights© 2010 G. Deugoue and M. Sango. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.en
dc.subjectStrong solutionen
dc.subject3D stochastic Leray-Alpha modelen
dc.subject.lcshStochastic modelsen
dc.titleOn the strong solution for the 3D Stochastic Leray-Alpha Modelen
dc.typeArticleen

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Deugoue_On(2010).pdf
Size:
648.7 KB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.43 KB
Format:
Item-specific license agreed upon to submission
Description: