Model-plant mismatch detection for a plant under model predictive control : a grinding mill circuit case study

dc.contributor.authorMittermaier, Heinz Karl
dc.contributor.authorLe Roux, Johan Derik
dc.contributor.authorOlivier, Laurentz Eugene
dc.contributor.authorCraig, Ian Keith
dc.contributor.emailderik.leroux@up.ac.zaen_US
dc.date.accessioned2024-07-30T05:08:10Z
dc.date.available2024-07-30T05:08:10Z
dc.date.issued2023-11
dc.description.abstractThis articles investigates two different techniques of identifying model-plant mismatch for a grinding mill circuit under model predictive control. A previous attempt at model-plant mismatch detection for a grinding mill, in the form of a partial cross correlation analysis, is used as a benchmark for model-plant mismatch detection and degraded sub-model isolation. This is followed by an investigation of the plant model ratio technique applied to the same system. The plant model ratio technique is able to isolate the sub-model containing a mismatch as well as detect the specific parameter in a first-order-plus-time-delay model responsible for the mismatch. A simulation study is used to quantify and compare the results between the two model-plant mismatch detection methodologies. The results indicate plant model ratio accurately and timeously detects mismatches in sub-models. This allows for system reidentification or controller adaption to ensure optimal process performance. The advantage above partial cross correlation is the parameter diagnosis within the degraded sub-model coupled with the mismatch direction.en_US
dc.description.departmentElectrical, Electronic and Computer Engineeringen_US
dc.description.librarianam2024en_US
dc.description.sdgSDG-09: Industry, innovation and infrastructureen_US
dc.description.sponsorshipThe National Research Foundation of South Africa.en_US
dc.description.urihttps://www.sciencedirect.com/journal/ifac-papersonlineen_US
dc.identifier.citationMittermaier, H.K., Le Roux, J.D., Olivier, L.E. et al. 2023, 'Model-plant mismatch detection for a plant under model predictive control : a grinding mill circuit case study', IFAC-PapersOnLine, vol. 56, no. 2, pp. 11778-11783. DOI: 10.1016/j.ifacol.2023.10.566.en_US
dc.identifier.issn2405-8963
dc.identifier.other10.1016/j.ifacol.2023.10.566
dc.identifier.urihttp://hdl.handle.net/2263/97299
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2023 The Authors. This is an open access article under the CC BY-NC-ND license.en_US
dc.subjectController performance monitoringen_US
dc.subjectGrinding mill circuiten_US
dc.subjectModel-plant mismatchen_US
dc.subjectProcess performance monitoringen_US
dc.subjectModel predictive control (MPC)en_US
dc.subjectSDG-09: Industry, innovation and infrastructureen_US
dc.titleModel-plant mismatch detection for a plant under model predictive control : a grinding mill circuit case studyen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Mittermaier_ModelPlant_2023.pdf
Size:
537.19 KB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: