Stability analysis and dynamics preserving nonstandard finite difference schemes for a malaria model

dc.contributor.authorAnguelov, Roumen
dc.contributor.authorDumont, Yves
dc.contributor.authorLubuma, Jean M.-S.
dc.contributor.authorMureithi, Eunice W.
dc.date.accessioned2013-10-09T11:14:30Z
dc.date.available2014-02-28T00:20:05Z
dc.date.issued2013-02
dc.description.abstractWhen both human and mosquito populations vary, forward bifurcation occurs if the basic reproduction number R0 is less than one in the absence of disease-induced death. When the disease-induced death rate is large enough R0 = 1 is a subcritical backward bifurcation point. The domain for the study of the dynamics is reduced to a compact and feasible region, where the system admits a speci c algebraic decomposition into infective and non-infected humans and mosquitoes. Stability results are extended and the possibility of backward bifurcation is clari ed. A dynamically consistent nonstandard nite di erence scheme is designed.en_US
dc.description.librarianhb2013en_US
dc.description.sponsorshipYves Dumont was supported jointly by the French Ministry of Health and the 2007–2013 Convergence program of the European Regional Development Fund (ERDF). Roumen Anguelov, Jean Lubuma, and Eunice Mureithi thank the South African National Research Foundation for its support.en_US
dc.description.urihttp://www.tandfonline.com/loi/gmps20en_US
dc.identifier.citationROUMEN ANGUELOV , YVES DUMONT , JEAN LUBUMA & EUNICE MUREITHI (2013) Stability Analysis and Dynamics Preserving Nonstandard Finite Difference Schemes for a Malaria Model, Mathematical Population Studies: An International Journal of Mathematical Demography, 20:2, 101-122, DOI: 10.1080/08898480.2013.777240en_US
dc.identifier.issn0889-8480 (print)
dc.identifier.issn1547-724X (online)
dc.identifier.other10.1080/08898480.2013.777240
dc.identifier.urihttp://hdl.handle.net/2263/31977
dc.language.isoenen_US
dc.publisherRoutledgeen_US
dc.rights© Taylor & Francis Group, LLC. This is an electronic version of an article published in Mathematical Population Studies, vol. 20, no.2, pp.101-122, 2013. Mathematical Population Studies is available online at : http://www.tandfonline.com/loi/gmps20en_US
dc.subjectBifurcation analysisen_US
dc.subjectDynamic consistencyen_US
dc.subjectGlobal asymptotic stabilityen_US
dc.subjectMalariaen_US
dc.subjectNonstandard finite differenceen_US
dc.titleStability analysis and dynamics preserving nonstandard finite difference schemes for a malaria modelen_US
dc.typePostprint Articleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Anguelov_Stability(2013).pdf
Size:
1.28 MB
Format:
Adobe Portable Document Format
Description:
Postpriint Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: