In vitro chicken bone marrow-derived dendritic cells comprise subsets at different states of maturation

dc.contributor.authorVan den Biggelaar, Robin H.G.A.
dc.contributor.authorArkesteijn, Ger J.A.
dc.contributor.authorRutten, Victor P.M.G.
dc.contributor.authorVan Eden, Willem
dc.contributor.authorJansen, Christine A.
dc.date.accessioned2021-06-29T09:21:53Z
dc.date.available2021-06-29T09:21:53Z
dc.date.issued2020-02
dc.description.abstractResearch in chickens has been fundamental for the discovery of basic aspects of the immune system and has led to an interest in the in-depth characterization of avian immune cell types including dendritic cells (DCs). The in vitro generation and expansion of chicken bone marrow-derived DCs (chBMDCs) in the presence of granulocyte-macrophage colony-stimulating factor (GM-CSF) has provided a way to study chicken DCs, which are only present at limited cell numbers in vivo. This method has been employed to study the interactions between chicken DCs and pathogens or vaccines. However, a detailed characterization of the chBMDC culture is still lacking. In the present study, we performed an elaborate phenotypical and functional analysis of the chBMDC culture and addressed its heterogeneity. After 8 days of culture, chBMDCs comprised major histocompatibility complex class II (MHC-II)low and MHC-IIhigh subsets with different morphologies. Compared with MHC-IIlow chBMDCs, the MHC-IIhigh subset showed a more mature phenotype, with higher expressions of CD1.1, CD40, CD80, CCR7, and CD83, and a relatively low opsonophagocytic capacity. Nevertheless, MHC-IIhigh chBMDCs did not show an increased capacity to induce T-cell proliferation. Therefore, MHC-IIhigh chBMDCs were found to be semi-mature. Interestingly, the presence of the semi-mature MHC-IIhigh chBMDC subset reduced when cells were cultured in the presence of IL-4. Finally, prolonged cell culture after fluorescence-activated cell sorting (FACS) converted the semi-mature MHC-IIhigh subset back into the immature phenotype of the MHC-IIlow subset, demonstrating plasticity of their maturation state. This detailed characterization explained the heterogeneity of the chBMDC culture by the simultaneous presence of immature and semi-mature chBMDC subsets, in addition to cells without features of antigen-presenting cells. Our findings are instrumental for the interpretation of experiments using the chBMDC culture in past and future research by providing insights into its phenotypically and functionally distinct cell types.en_ZA
dc.description.departmentVeterinary Tropical Diseasesen_ZA
dc.description.librarianpm2021en_ZA
dc.description.urihttp://www.frontiersin.org/Immunologyen_ZA
dc.identifier.citationVan den Biggelaar RHGA, Arkesteijn GJA, Rutten VPMG, van Eden W and Jansen CA (2020) In vitro Chicken Bone Marrow-Derived Dendritic Cells Comprise Subsets at Different States of Maturation. Frontiers in Immunology 11:141. doi: 10.3389/fimmu.2020.00141.en_ZA
dc.identifier.issn1664-3224 (online)
dc.identifier.other10.3389/fimmu.2020.00141
dc.identifier.urihttp://hdl.handle.net/2263/80646
dc.language.isoenen_ZA
dc.publisherFrontiers Mediaen_ZA
dc.rights© 2020 van den Biggelaar, Arkesteijn, Rutten, van Eden and Jansen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY).en_ZA
dc.subjectMaturationen_ZA
dc.subjectChicken bone marrow-derived dendritic cells (chBMDCs)en_ZA
dc.subjectGranulocyte-macrophage colony-stimulating factor (GM-CSF)en_ZA
dc.subjectFluorescence-activated cell sorting (FACS)en_ZA
dc.subjectMajor histocompatibility complex class II (MHC-II)en_ZA
dc.subjectInterleukin4 (IL-4)en_ZA
dc.titleIn vitro chicken bone marrow-derived dendritic cells comprise subsets at different states of maturationen_ZA
dc.typeArticleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
VanDenBiggelaar_InVitro_2020.pdf
Size:
5.85 MB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: