Best proximity point results in generalized metric spaces

dc.contributor.authorSaleem, Naeem
dc.contributor.authorAbbas, Mujahid
dc.contributor.authorFarooq, Sadia
dc.date.accessioned2023-03-08T05:08:48Z
dc.date.available2023-03-08T05:08:48Z
dc.date.issued2022-06
dc.description.abstractIn this paper we define a new class of mappings called (θ, α+)- proximal admissible contractions and obtain a unique best proximity point for such mappings in the setting of complete generalized metric space. Our result is an extension of comparable results in the existing literature. Some examples are presented to support the results proved hereinen_US
dc.description.departmentMathematics and Applied Mathematicsen_US
dc.description.librarianam2023en_US
dc.description.urihttp://thaijmath.in.cmu.ac.then_US
dc.identifier.citationSaleem, N., Abbas, M., Farooq, S. 2022, 'Best proximity point results in generalized metric spaces', Thai Journal of Mathematics, vol. 20, no. 2, pp. 589-603.en_US
dc.identifier.issn1686-0209
dc.identifier.urihttps://repository.up.ac.za/handle/2263/90015
dc.language.isoenen_US
dc.publisherMathematical Association of Thailanden_US
dc.rights© 2022 by the Mathematical Association of Thailand.en_US
dc.subjectGeneralized metric spaceen_US
dc.subjectProximal + admissibleen_US
dc.subjectBest proximity pointen_US
dc.subject(θ, α+)−proximal admissible contractionen_US
dc.titleBest proximity point results in generalized metric spacesen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Saleem_Best_2022.pdf
Size:
669.72 KB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: