Benchmarks for dynamic multi-objective optimisation algorithms

dc.contributor.authorHelbig, Marde
dc.contributor.authorEngelbrecht, Andries P.
dc.contributor.emailengel@cs.up.ac.zaen_ZA
dc.date.accessioned2015-02-26T06:32:25Z
dc.date.available2015-02-26T06:32:25Z
dc.date.issued2014-01
dc.description.abstractAlgorithms that solve Dynamic Multi-Objective Optimisation Problems (DMOOPs) should be tested on benchmark functions to determine whether the algorithm can overcome specific difficulties that can occur in real-world problems. However, for Dynamic Multi-Objective Optimisation (DMOO), no standard benchmark functions are used. A number of DMOOPs have been proposed in recent years. However, no comprehensive overview of DMOOPs exist in the literature. Therefore, choosing which benchmark functions to use is not a trivial task. This article seeks to address this gap in the DMOO literature by providing a comprehensive overview of proposed DMOOPs, and proposing characteristics that an ideal DMOO benchmark function suite should exhibit. In addition, DMOOPs are proposed for each characteristic. Shortcomings of current DMOOPs that do not address certain characteristics of an ideal benchmark suite are highlighted. These identified shortcomings are addressed by proposing new DMOO benchmark functions with complicated Pareto-Optimal Sets (POSs), and approaches to develop DMOOPs with either an isolated or deceptive Pareto-Optimal Front (POF). In addition, DMOO application areas and real-world DMOOPs are discussed.en_ZA
dc.description.librarianhj2015en_ZA
dc.description.urihttp://surveys.acm.orgen_ZA
dc.identifier.citationHelbig, M & Engelbrecht, AP 2014, 'Benchmarks for dynamic multi-objective optimisation algorithms', ACM Computing Surveys, vol. 46, no. 3, art. 37, pp. 1-33.en_ZA
dc.identifier.issn0360-0300 (print)
dc.identifier.issn1557-7341 (online)
dc.identifier.issn10.1145/2517649
dc.identifier.urihttp://hdl.handle.net/2263/43823
dc.language.isoenen_ZA
dc.publisherAssociation for Computingen_ZA
dc.rights© 2014 ACM. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in ACM Computing Surveys, vol. 46, no. 3, pp. 1-33, 2014. doi : 10.1145/2517649. ACM Computing Surveys is available online at : http://surveys.acm.orgen_ZA
dc.subjectBenchmark functionsen_ZA
dc.subjectComplex Pareto-optimal seten_ZA
dc.subjectDeceptive Pareto-optimal fronten_ZA
dc.subjectDynamic multi-objective optimisation (DMOO)en_ZA
dc.subjectDynamic multi-objective optimisation problems (DMOOPs)en_ZA
dc.subjectIdeal benchmark function suiteen_ZA
dc.subjectIsolated Pareto-optimal fronten_ZA
dc.subjectIndustrial efficiencyen_ZA
dc.subjectBenchmarking (Management)en_ZA
dc.subjectOptimal control theoryen_ZA
dc.subjectMathematical optimizationen_ZA
dc.subjectAlgorithmsen_ZA
dc.titleBenchmarks for dynamic multi-objective optimisation algorithmsen_ZA
dc.typePostprint Articleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Helbig_Benchmarks_2014.pdf
Size:
1.35 MB
Format:
Adobe Portable Document Format
Description:
Postprint Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: