Gaussian process based model predictive control to address uncertain milling circuit dynamics

dc.contributor.authorOlivier, Laurentz Eugene
dc.date.accessioned2022-08-19T12:01:07Z
dc.date.available2022-08-19T12:01:07Z
dc.date.issued2021
dc.description.abstractModel predictive control performance rests heavily on the accuracy of the available plant model. To address (possibly) time-variant model uncertainty, a nominal nonlinear state-space model is combined with an additive residual model that takes the form of a Gaussian process. With sufficient operational data the Gaussian process model is able to effectively describe the residual model error and reduce the overall prediction error for effective model predictive control. The efficacy of the method is illustrated using a milling circuit simulator.en_US
dc.description.departmentElectrical, Electronic and Computer Engineeringen_US
dc.description.librarianam2022en_US
dc.description.urihttps://www.journals.elsevier.com/ifac-papersonlineen_US
dc.identifier.citationOlivier, L.E. 2021, 'Gaussian process based model predictive control to address uncertain milling circuit dynamics', IFAC PapersOnLine, vol. 54, no. 21, pp. 1-6, doi : 10.1016/j.ifacol.2021.12.001.en_US
dc.identifier.issn1474-6670 (print)
dc.identifier.issn2405-8963 (online)
dc.identifier.other10.1016/j.ifacol.2021.12.001
dc.identifier.urihttps://repository.up.ac.za/handle/2263/86891
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2021 The Authors. This is an open access article under the CC BY-NC-ND license.en_US
dc.subjectGaussian processen_US
dc.subjectMillingen_US
dc.subjectModel predictive controlen_US
dc.subjectModel uncertaintyen_US
dc.subjectRun-of-mine oreen_US
dc.titleGaussian process based model predictive control to address uncertain milling circuit dynamicsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Olivier_Gaussian_2021.pdf
Size:
537.33 KB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: