Long bone histomorphogenesis of the naked mole-rat : histodiversity and intraspecific variation

dc.contributor.authorMontoya-Sanhueza, German
dc.contributor.authorBennett, Nigel Charles
dc.contributor.authorOosthuizen, Maria Kathleen
dc.contributor.authorDengler-Crish, Christine M.
dc.contributor.authorChinsamy, Anusuya
dc.date.accessioned2022-03-28T06:57:59Z
dc.date.available2022-03-28T06:57:59Z
dc.date.issued2021-06
dc.description.abstractLacking fur, living in eusocial colonies and having the longest lifespan of any rodent, makes naked mole-rats (NMRs) rather peculiar mammals. Although they exhibit a high degree of polymorphism, skeletal plasticity and are considered a novel model to assess the effects of delayed puberty on the skeletal system, scarce information on their morphogenesis exists. Here, we examined a large ontogenetic sample (n = 76) of subordinate individuals to assess the pattern of bone growth and bone microstructure of fore- and hindlimb bones by using histomorphological techniques. Over 290 undecalcified thin cross-sections from the midshaft of the humerus, ulna, femur, and tibia from pups, juveniles and adults were analyzed with polarized light microscopy. Similar to other fossorial mammals, NMRs exhibited a systematic cortical thickening of their long bones, which clearly indicates a conserved functional adaptation to withstand the mechanical strains imposed during digging, regardless of their chisel-tooth predominance. We describe a high histodiversity of bone matrices and the formation of secondary osteons in NMRs. The bones of pups are extremely thin-walled and grow by periosteal bone formation coupled with considerable expansion of the medullary cavity, a process probably tightly regulated and adapted to optimize the amount of minerals destined for skeletal development, to thus allow the female breeder to produce a higher number of pups, as well as several litters. Subsequent cortical thickening in juveniles involves high amounts of endosteal bone apposition, which contrasts with the bone modeling of other mammals where a periosteal predominance exists. Adults have bone matrices predominantly consisting of parallel-fibered bone and lamellar bone, which indicate intermediate to slow rates of osteogenesis, as well as the development of poorly vascularized lamellar-zonal tissues separated by lines of arrested growth (LAGs) and annuli. These features reflect the low metabolism, low body temperature and slow growth rates reported for this species, as well as indicate a cyclical pattern of osteogenesis. The presence of LAGs in captive individuals was striking and indicates that postnatal osteogenesis and its consequent cortical stratification most likely represents a plesiomorphic thermometabolic strategy among endotherms which has been suggested to be regulated by endogenous rhythms. However, the generalized presence of LAGs in this and other subterranean taxa in the wild, as well as recent investigations on variability of environmental conditions in burrow systems, supports the hypothesis that underground environments experience seasonal fluctuations that may influence the postnatal osteogenesis of animals by limiting the extension of burrow systems during the unfavorable dry seasons and therefore the finding of food resources. Additionally, the intraspecific variation found in the formation of bone tissue matrices and vascularization suggested a high degree of developmental plasticity in NMRs, which may help explaining the polymorphism reported for this species. The results obtained here represent a valuable contribution to understanding the relationship of several aspects involved in the morphogenesis of the skeletal system of a mammal with extraordinary adaptations.en_ZA
dc.description.departmentMammal Research Instituteen_ZA
dc.description.departmentZoology and Entomologyen_ZA
dc.description.librarianhj2022en_ZA
dc.description.sponsorshipCONICYT; National Research Foundation and DST-NRF.en_ZA
dc.description.urihttp://www.wileyonlinelibrary.com/journal/joaen_ZA
dc.identifier.citationMontoya-Sanhueza, G., Bennett, N.C., Oosthuizen, M.K., Dengler-Crish, C.M., Chinsamy, A.. Long bone histomorphogenesis of the naked mole-rat: Histodiversity and intraspecific variation. Journal of Anatomy 2021;238:1259–1283. https://doi.org/10.1111/joa.13381.en_ZA
dc.identifier.issn0021-8782 (print)
dc.identifier.issn1469-7580 (online)
dc.identifier.other10.1111/joa.13381
dc.identifier.urihttp://hdl.handle.net/2263/84665
dc.language.isoenen_ZA
dc.publisherWileyen_ZA
dc.rights© 2021 Anatomical Society. This is the pre-peer reviewed version of the following article : Long bone histomorphogenesis of the naked mole-rat: Histodiversity and intraspecific variation. Journal of Anatomy 2021;238:1259–1283. https://doi.org/10.1111/joa.13381. The definite version is available at : http://www.wileyonlinelibrary.com/journal/joa.en_ZA
dc.subjectNaked mole-rat (Heterocephalus glaber)en_ZA
dc.subjectNaked mole-rats (NMRs)en_ZA
dc.subjectBone microstructureen_ZA
dc.subjectBone modelingen_ZA
dc.subjectEndosteal boneen_ZA
dc.subjectHeterocephalus glaberen_ZA
dc.subjectLamellar boneen_ZA
dc.subjectLamellar-zonal boneen_ZA
dc.subjectLong bone growthen_ZA
dc.titleLong bone histomorphogenesis of the naked mole-rat : histodiversity and intraspecific variationen_ZA
dc.typePostprint Articleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MontoyaSanhueza_Long_2021.pdf
Size:
4.14 MB
Format:
Adobe Portable Document Format
Description:
Postprint Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: