Noncommutative Ricci flow in a matrix geometry

dc.contributor.authorDuvenhage, Rocco de Villiers
dc.contributor.emailrocco.duvenhage@up.ac.zaen_US
dc.date.accessioned2014-02-20T11:52:17Z
dc.date.issued2014-01
dc.description.abstractWe study noncommutative Ricci flow in a finite-dimensional representation of a noncommutative torus. It is shown that the flow exists and converges to the flat metric. We also consider the evolution of entropy and a definition of scalar curvature in terms of the Ricci flow.en_US
dc.description.librarianhb2014en_US
dc.description.sponsorshipNational Research Foundation of South Africaen_US
dc.description.urihttp://iopscience.iop.org/0305-4470en_US
dc.identifier.citationDuvenhage, R 2014, 'Noncommutative Ricci flow in a matrix geometry', Journal of Physics A : Mathematical and Theoretical, vol. 47, no. 4,, art. no. 045203, pp. 1-13.en_US
dc.identifier.issn0305-4470 (print)
dc.identifier.issn1361-6447 (online)
dc.identifier.other10.1088/1751-8113/47/4/045203
dc.identifier.urihttp://hdl.handle.net/2263/33623
dc.language.isoenen_US
dc.publisherInstitute of Physicsen_US
dc.rights© 2014 IOP Publishing Ltden_US
dc.subjectNoncommutative geometryen_US
dc.subjectMatrix geometryen_US
dc.subjectRicci flowen_US
dc.subjectPACS number : 02.40.Ghen_US
dc.titleNoncommutative Ricci flow in a matrix geometryen_US
dc.typePostprint Articleen_US

Files

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: