Chaos in a discrete cancer model

dc.contributor.authorDukuza, Kenneth
dc.contributor.emailkenneth.dukuza@up.ac.zaen_US
dc.date.accessioned2023-05-05T07:04:02Z
dc.date.available2023-05-05T07:04:02Z
dc.date.issued2022-06
dc.description.abstractIn this paper, we construct and analyse a discrete cancer mathematical model. Essential dynamic properties such as positivity and boundedness of solutions are discussed. Using the Lyapunov stability theorem, we prove that one of the tumor-free equilibria is globally asymptotically stable. Furthermore, the discrete model exhibits chaos for certain parameter values and this is supported by the existence of a positive Lyapunov exponent. Numerical simulations are performed to demonstrate our analytical results.en_US
dc.description.departmentMathematics and Applied Mathematicsen_US
dc.description.librarianhj2023en_US
dc.description.urihttps://lhscientificpublishing.com/Journals/JAND-Default.aspxen_US
dc.identifier.citationDukuza, K. 2022, 'Chaos in a discrete cancer model', Journal of Applied Nonlinear Dynamics, vol. 11, no. 2, pp. 297-308, doi : 10.5890/JAND.2022.06.003.en_US
dc.identifier.issn2164-6457 (print)
dc.identifier.issn2164-6473 (online)
dc.identifier.other10.5890/JAND.2022.06.003
dc.identifier.urihttp://hdl.handle.net/2263/90560
dc.language.isoenen_US
dc.publisherL&H Scientific Publishingen_US
dc.rights© 2022 L&H Scientific Publishing, LLC. All rights reserved.en_US
dc.subjectCancer modelen_US
dc.subjectLyapunov exponentsen_US
dc.subjectLyapunov stability theoremen_US
dc.subjectNonstandard finite difference methoden_US
dc.titleChaos in a discrete cancer modelen_US
dc.typePostprint Articleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dukuza_Chaos_2022.pdf
Size:
2.1 MB
Format:
Adobe Portable Document Format
Description:
Postprint Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: