Chaos in a discrete cancer model
dc.contributor.author | Dukuza, Kenneth | |
dc.contributor.email | kenneth.dukuza@up.ac.za | en_US |
dc.date.accessioned | 2023-05-05T07:04:02Z | |
dc.date.available | 2023-05-05T07:04:02Z | |
dc.date.issued | 2022-06 | |
dc.description.abstract | In this paper, we construct and analyse a discrete cancer mathematical model. Essential dynamic properties such as positivity and boundedness of solutions are discussed. Using the Lyapunov stability theorem, we prove that one of the tumor-free equilibria is globally asymptotically stable. Furthermore, the discrete model exhibits chaos for certain parameter values and this is supported by the existence of a positive Lyapunov exponent. Numerical simulations are performed to demonstrate our analytical results. | en_US |
dc.description.department | Mathematics and Applied Mathematics | en_US |
dc.description.librarian | hj2023 | en_US |
dc.description.uri | https://lhscientificpublishing.com/Journals/JAND-Default.aspx | en_US |
dc.identifier.citation | Dukuza, K. 2022, 'Chaos in a discrete cancer model', Journal of Applied Nonlinear Dynamics, vol. 11, no. 2, pp. 297-308, doi : 10.5890/JAND.2022.06.003. | en_US |
dc.identifier.issn | 2164-6457 (print) | |
dc.identifier.issn | 2164-6473 (online) | |
dc.identifier.other | 10.5890/JAND.2022.06.003 | |
dc.identifier.uri | http://hdl.handle.net/2263/90560 | |
dc.language.iso | en | en_US |
dc.publisher | L&H Scientific Publishing | en_US |
dc.rights | © 2022 L&H Scientific Publishing, LLC. All rights reserved. | en_US |
dc.subject | Cancer model | en_US |
dc.subject | Lyapunov exponents | en_US |
dc.subject | Lyapunov stability theorem | en_US |
dc.subject | Nonstandard finite difference method | en_US |
dc.title | Chaos in a discrete cancer model | en_US |
dc.type | Postprint Article | en_US |