Weighted-type Wishart distributions with application

dc.contributor.authorArashi, Mohammad
dc.contributor.authorBekker, Andriette, 1958-
dc.contributor.authorVan Niekerk, Janet
dc.contributor.emailandriette.bekker@up.ac.zaen_ZA
dc.date.accessioned2017-08-21T06:27:06Z
dc.date.available2017-08-21T06:27:06Z
dc.date.issued2017
dc.description.abstractIn this paper, we consider a general framework for constructing new valid densities regarding a random matrix variate. However, we focus speci cally on the Wishart distribution. The methodology involves coupling the density function of the Wishart distribution with a Borel measurable function as a weight. We propose three di erent weights by considering trace and determinant operators on matrices. The charac- teristics for the proposed weighted-type Wishart distributions are studied and the enrichment of this approach is illustrated. A special case of this weighted-type dis- tribution is applied in the Bayesian analysis of the normal model in the univariate and multivariate cases. It is shown that the performance of this new prior model is competitive using various measures.en_ZA
dc.description.departmentStatisticsen_ZA
dc.description.librarianam2017en_ZA
dc.description.sponsorshipThe authors would like to hereby acknowledge the support of the StatDisT group. This work is based upon research supported by the UP Vice-chancellor's post-doctoral fellowship programme, the National Research foundation grant (Re:CPRR3090132066 No 91497) and the vulnerable discipline-academic statis- tics (STAT) fund.en_ZA
dc.description.urihttps://www.ine.pt/revstat/inicio.htmlen_ZA
dc.identifier.citationArashi, M., Bekker, A. & Van Niekerk, J. 2017, 'Weighted-type Wishart distributions with application', Revstat Statistical Journal, vol. 15, no. 2, pp. 205-222.en_ZA
dc.identifier.issn1645-6726 (online)
dc.identifier.other10.4314/wsa.v43i2.12
dc.identifier.urihttp://hdl.handle.net/2263/61741
dc.language.isoenen_ZA
dc.publisherNational Statistical Institute of Portugalen_ZA
dc.rights© 2017, National Statistical Institute. All rights reserved.. This is an Open Access article distributed under the terms of the Creative Commons Attribution License.en_ZA
dc.subjectBayesian analysisen_ZA
dc.subjectEigenvaluesen_ZA
dc.subjectKummer gammaen_ZA
dc.subjectKummer Wisharten_ZA
dc.subjectMatrix variateen_ZA
dc.subjectWeight functionen_ZA
dc.subjectWishart distributionen_ZA
dc.titleWeighted-type Wishart distributions with applicationen_ZA
dc.typeArticleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Arashi_WeightedType_2017.pdf
Size:
497.76 KB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: