Singlet-triplet annihilation in single LHCII complexes

dc.contributor.authorGruber, J. Michael
dc.contributor.authorChmeliov, Jevgenij
dc.contributor.authorKruger, T.P.J. (Tjaart)
dc.contributor.authorValkunas, Leonas
dc.contributor.authorVan Grondelle, Rienk
dc.date.accessioned2015-08-21T09:34:24Z
dc.date.available2015-08-21T09:34:24Z
dc.date.issued2015-08
dc.description.abstractIn light harvesting complex II (LHCII) of higher plants and green algae, carotenoids (Cars) have an important function to quench chlorophyll (Chl) triplet states and therefore avoid the production of harmful singlet oxygen. The resulting Car triplet states lead to a non-linear self-quenching mechanism called singlet–triplet (S–T) annihilation that strongly depends on the excitation density. In this work we investigated the fluorescence decay kinetics of single immobilized LHCIIs at room temperature and found a two-exponential decay with a slow (3.5 ns) and a fast (35 ps) component. The relative amplitude fraction of the fast component increases with increasing excitation intensity, and the resulting decrease in the fluorescence quantum yield suggests annihilation effects. Modulation of the excitation pattern by means of an acousto-optic modulator (AOM) furthermore allowed us to resolve the time-dependent accumulation and decay rate (B7 ms) of the quenching species. Inspired by singlet–singlet (S–S) annihilation studies, we developed a stochastic model and then successfully applied it to describe and explain all the experimentally observed steady-state and time-dependent kinetics. That allowed us to distinctively identify the quenching mechanism as S–T annihilation. Quantitative fitting resulted in a conclusive set of parameters validating our interpretation of the experimental results. The obtained stochastic model can be generalized to describe S–T annihilation in small molecular aggregates where the equilibration time of excitations is much faster than the annihilation-free singlet excited state lifetime.en_ZA
dc.description.embargo2016-08-31en_ZA
dc.description.librarianhb2015en_ZA
dc.description.sponsorshipVU University and by an Advanced Investigator grant from the European Research Council (no. 267333, PHOTPROT).Nederlandse Organisatie voor Wetenschappelijk Onderzoek, Council of Chemical Sciences (NWO-CW) via a TOP-grant (700.58.305), and by the EU FP7 project PAPETS (GA 323901).Academy Professor grant from the Netherlands Royal Academy of Sciences (KNAW). University of Pretoria's Research Development Programme (Grant No.A0W679) Research Council of Lithuania (LMT grant no. MIP-080/2015).en_ZA
dc.description.urihttp://www.rsc.orgpccpen_ZA
dc.identifier.citationGruber, MJ, Chmeliov, J, Krüger, TPJ, Valkunas, L & Van Grondelle, R 2015, 'Singlet-triplet annihilation in single LHCII complexes', Physical Chemistry Chemical Physics, vol. 17, no. 30, pp. 19844-19853.en_ZA
dc.identifier.issn1463-9076 (print)
dc.identifier.issn1463-9084 (online)
dc.identifier.other10.1039/C5CP01806D
dc.identifier.urihttp://hdl.handle.net/2263/49425
dc.language.isoenen_ZA
dc.publisherRoyal Society of Chemistryen_ZA
dc.rights© the Owner Societies 2015en_ZA
dc.subjectLight-harvesting complex II (LHCII)en_ZA
dc.subjectSinglet–triplet annihilationen_ZA
dc.titleSinglet-triplet annihilation in single LHCII complexesen_ZA
dc.typePostprint Articleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Gruber_Singlet_2015.pdf
Size:
577.22 KB
Format:
Adobe Portable Document Format
Description:
Postprint Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: