Using large data sets to forecast house prices : a case study of twenty U.S. states

dc.contributor.authorGupta, Rangan
dc.contributor.authorKabundi, Alain
dc.contributor.authorMiller, Stephen M.
dc.contributor.emailrangan.gupta@up.ac.zaen_US
dc.date.accessioned2012-05-24T11:35:36Z
dc.date.available2012-05-24T11:35:36Z
dc.date.issued2011
dc.description.abstractSeveral Bayesian and classical models are used to forecast house prices in 20 states in the United States. There are two approaches: extracting common factors (principle components) in a factor-augmented vector autoregressive or factor-augmented Bayesian vector autoregressive models or Bayesian shrinkage in a large-scale Bayesian vector autoregressive models. The study compares the forecast performance of the 1976:Q1 to 1994:Q4 in-sample period to the out-of-sample horizon 1995:Q1 to 2009:Q1 period. The findings provide mixed evidence on the role of macroeconomic fundamentals in improving the forecasting performance of time-series models. For 13 states, models that include the information of macroeconomic fundamentals improve the forecasting performance, while for seven states they do not.en
dc.description.librariannf2012en
dc.description.urihttp://business.fullerton.edu/finance/jhr/en_US
dc.identifier.citationGupta, R, Kabundi, A & Miller, SM 2011, 'Using large data sets to forecast house prices : a case study of twenty U.S. states', Journal of Housing Research, vol. 20, no. 2, pp. 161-191.en
dc.identifier.issn1052-7001 (print)
dc.identifier.urihttp://hdl.handle.net/2263/18872
dc.language.isoenen_US
dc.publisherAmerican Real Estate Societyen_US
dc.rightsAmerican Real Estate Societyen_US
dc.subjectBayesian vector autoregressive (BVAR) modelen
dc.subjectVector autoregressive (VAR) modelen
dc.subjectFactor-augmented VAR (FAVAR) modelen
dc.subjectSpatial Bayesian VAR (SBVAR) modelen
dc.subjectSpatial Bayesian FAVAR (SFABVAR) modelen
dc.subjectSpatial large-scale BVAR (SLBVAR) modelen
dc.subject.lcshHousing -- Prices -- United States -- Forecastingen
dc.titleUsing large data sets to forecast house prices : a case study of twenty U.S. statesen
dc.typeArticleen

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Gupta_Using(2011).pdf
Size:
460.98 KB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: