On-line auto-tuning of multivariable industrial processes using Bayesian optimisation

dc.contributor.advisorCraig, Ian K
dc.contributor.coadvisorLe Roux, Johan Derik
dc.contributor.emailjonathan.vanniekerk@icloud.comen_US
dc.contributor.postgraduateVan Niekerk, Jonathan Anson
dc.date.accessioned2023-07-03T12:35:23Z
dc.date.available2023-07-03T12:35:23Z
dc.date.created2023
dc.date.issued2023
dc.descriptionDissertation (MEng (Electronic Engineering))--University of Pretoria, 2023.en_US
dc.description.abstractAuto-tuning of multi-input multi-output (MIMO) controllers of a bulk tailing treatment (BTT) surge tank is presented. Two controllers are selected for optimisation. The first controller is a decentralised proportional-integral (PI) controller that controls a plant simulated using a linear model. The second controller is a multivariable inverse PI controller that controls a plant simulated using a non-linear process model. Objective functions are designed to promote set point tracking and disturbance rejection. The search domain constraints are determined by intuitively expanding the search domain around the tuning parameters of the reference controller. Results show that Bayesian optimisation is successful in improving the performance of the set point tracking and disturbance rejection controllers for the surge tank process.en_US
dc.description.availabilityUnrestricteden_US
dc.description.degreeMEng (Electronic Engineering)en_US
dc.description.departmentElectrical, Electronic and Computer Engineeringen_US
dc.identifier.citationVan Niekerk, 2023, On-line auto-tuning of multivariable industrial processes using Bayesian optimisation, Dissertation, University of Pretoria, Pretoria.en_US
dc.identifier.doihttps://doi.org/10.25403/UPresearchdata.23554806.v1en_US
dc.identifier.urihttp://hdl.handle.net/2263/91252
dc.identifier.uriDOI:https://doi.org/10.25403/UPresearchdata.23554806.v1
dc.language.isoenen_US
dc.publisherUniversity of Pretoria
dc.rights© 2023 University of Pretoria. All rights reserved. The copyright in this work vests in the University of Pretoria. No part of this work may be reproduced or transmitted in any form or by any means, without the prior written permission of the University of Pretoria.
dc.subjectUCTDen_US
dc.subjectBayesian optimisationen_US
dc.subjectGaussian processesen_US
dc.subjectAuto-tuningen_US
dc.subjectMulti-input multi-output (MIMO) controllersen_US
dc.subjectBulk tailing treatmenten_US
dc.subject.otherEngineering, built environment and information technology SDG-09
dc.subject.otherSDG-09: Industry, innovation and infrastructure
dc.titleOn-line auto-tuning of multivariable industrial processes using Bayesian optimisationen_US
dc.typeDissertationen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
VanNiekerk_Online_2023.pdf
Size:
9.27 MB
Format:
Adobe Portable Document Format
Description:
Dissertation

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: