Hybrid retrieval of grass biophysical variables based-on radiative transfer, active learning and regression methods using Sentinel-2 data in Marakele National Park

dc.contributor.authorTsele, Philemon
dc.contributor.authorRamoelo, Abel
dc.contributor.emailphilemon.tsele@up.ac.zaen_US
dc.date.accessioned2024-08-21T06:55:24Z
dc.date.available2024-08-21T06:55:24Z
dc.date.issued2024-08
dc.descriptionDATA AVAILABILITY STATEMENT : We understand that the publication of the data is becoming a good practice in research.en_US
dc.description.abstractBiophysical variables such as leaf area index (LAI) and leaf chlorophyll content (LCC) are cited as essential biodiversity variables. A comprehensive comparison and integration of retrieval methods is needed for the estimation of biophysical variables such as LAI and LCC over a multispecies grass canopy. This study tested an assortment of five potentially robust, nonparametric regression methods (NPRMs) for inversion of radiative transfer model (RTM) to retrieve grass LAI and LCC in the Marakele National Park (MNP) of South Africa. The NPRMs used were, namely (i) Partial least squares regression (PLSR), (ii) Principle components regression (PCR), (iii) Kernel ridge regression (KRR), (iv) Random forest regression (RFR), and (v) K-nearest neighbours regression (KNNR). Furthermore, the study attempted to constrain the inversion process by using active learning (AL) techniques which ensured the selection of informative samples from a large pool of RTM simulations. Results show the most accurate grass LAI and LCC retrievals had lower relative root mean squared errors (RRMSEs) of 39.87% and 16.58% respectively. These findings have significant implications for the development of transferable rangeland monitoring systems in protected mountainous regions.en_US
dc.description.departmentGeography, Geoinformatics and Meteorologyen_US
dc.description.librarianhj2024en_US
dc.description.sdgSDG-13:Climate actionen_US
dc.description.sdgSDG-15:Life on landen_US
dc.description.sponsorshipResearch development programme of the University of Pretoria; National Research Foundation (NRF) of South Africa AND Southern African Science Service Centre for Climate Change and Adaptive Land Management (SASSCAL).en_US
dc.description.urihttps://www.tandfonline.com/journals/TGEIen_US
dc.identifier.citationPhilemon Tsele & Abel Ramoelo (2024) Hybrid retrieval of grass biophysical variables based-on radiative transfer, active learning and regression methods using Sentinel-2 data in Marakele National Park, Geocarto International, 39:1, 2387087, DOI: 10.1080/10106049.2024.2387087.en_US
dc.identifier.issn1010-6049 (print)
dc.identifier.issn1752-0762 (online)
dc.identifier.other10.1080/10106049.2024.2387087
dc.identifier.urihttp://hdl.handle.net/2263/97766
dc.language.isoenen_US
dc.publisherTaylor and Francisen_US
dc.rights© 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution License.en_US
dc.subjectLeaf area index (LAI)en_US
dc.subjectLeaf chlorophyll content (LCC)en_US
dc.subjectRadiative transfer model (RTM)en_US
dc.subjectSentinel-2 imageryen_US
dc.subjectActive learningen_US
dc.subjectPROSAILen_US
dc.subjectMarakele National Park (MNP)en_US
dc.subjectSouth Africa (SA)en_US
dc.subjectNonparametric regression method (NPRM)en_US
dc.subjectPartial least squares regression (PLSR)en_US
dc.subjectPrinciple components regression (PCR)en_US
dc.subjectKernel ridge regression (KRR)en_US
dc.subjectRandom forest regression (RFR)en_US
dc.subjectK-nearest neighbours regression (KNNR)en_US
dc.subjectRelative root mean squared errors (RRMSEs)en_US
dc.subjectSDG-13: Climate actionen_US
dc.subjectSDG-15: Life on landen_US
dc.titleHybrid retrieval of grass biophysical variables based-on radiative transfer, active learning and regression methods using Sentinel-2 data in Marakele National Parken_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Tsele_Hybrid_2024.pdf
Size:
1.52 MB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: