Fault detection in roller bearing operating at low speed and varying loads using Bayesian robust new hidden Markov model

dc.contributor.authorOmoregbee, Henry Ogbemudia
dc.contributor.authorHeyns, P.S. (Philippus Stephanus)
dc.date.accessioned2018-10-17T12:28:30Z
dc.date.issued2018-09
dc.description.abstractThis paper uses Bayesian robust new hidden Markov modeling (BRNHMM) for bearing fault detection and diagnosis based on its acoustic emission signal. A variational Bayesian approach is used that simultaneously approximates the distribution over the hidden states and parameters with simpler distribution hence using Bayesian inference for the estimation of the posterior HMM hyperparameters. This allows for online detection as small data sets can be used. Also, the Kullback-Leibler (KL) divergence is effectively used to access the divergence of the probability function of the BRNHMM, to find its lower bound approximation and by applying a linear transform to the maximum output probability parameter generation (MOPPG). The training set result obtained from BRNHMM is then compared to the result from artificial neural network (ANN) fault detection for same complex system of low speed and varying load conditions which are difficult from a diagnostic perspective, as found in rolling mills.en_ZA
dc.description.departmentMechanical and Aeronautical Engineeringen_ZA
dc.description.embargo2019-09-01
dc.description.librarianhj2018en_ZA
dc.description.urihttp://link.springer.com/journal/12206en_ZA
dc.identifier.citationOmoregbee, H.O. & Heyns, P.S. Fault detection in roller bearing operating at low speed and varying loads using Bayesian robust new hidden Markov model. Journal of Mechanical Science and Technology (2018) 32: 4025-4036. https://doi.org/10.1007/s12206-018-0802-8.en_ZA
dc.identifier.issn1738-494X (print)
dc.identifier.issn1976-3824 (online)
dc.identifier.other10.1007/s12206-018-0802-8
dc.identifier.urihttp://hdl.handle.net/2263/66927
dc.language.isoenen_ZA
dc.publisherSpringeren_ZA
dc.rights© The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018. The original publication is available at : http://link.springer.comjournal/12206.en_ZA
dc.subjectBayesian robust new hidden Markov modeling (BRNHMM)en_ZA
dc.subjectMaximum output probability parameter generation (MOPPG)en_ZA
dc.subjectArtificial neural network (ANN)en_ZA
dc.subjectAcoustic emissionen_ZA
dc.subjectKullback-Leibler (KL) divergenceen_ZA
dc.subjectProbabilistic neural network (PNN)en_ZA
dc.subjectRadial basis function (RBF)en_ZA
dc.subjectBayesian networksen_ZA
dc.subjectHidden Markov modelsen_ZA
dc.subjectInference enginesen_ZA
dc.subjectMathematical transformationsen_ZA
dc.subjectNeural networksen_ZA
dc.subjectRoller bearingsen_ZA
dc.subjectAcoustic emission signalen_ZA
dc.subjectBearing fault detectionen_ZA
dc.subjectP Fault detectionen_ZA
dc.subject.otherEngineering, built environment and information technology articles SDG-09
dc.subject.otherSDG-09: Industry, innovation and infrastructure
dc.subject.otherEngineering, built environment and information technology articles SDG-12
dc.subject.otherSDG-12: Responsible consumption and production
dc.titleFault detection in roller bearing operating at low speed and varying loads using Bayesian robust new hidden Markov modelen_ZA
dc.typePostprint Articleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Omoregbee_Fault_2018.pdf
Size:
2.07 MB
Format:
Adobe Portable Document Format
Description:
Postprint Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: